Bedienungsanleitung SL89_9x0021 / 22 / 23

Kompakter Inline Durchflusssensor mit integriertem Strömungsgleichrichter*

^{*} ab Baugröße 1/2"

I. Vorwort

Sehr geehrter Kunde,

vielen Dank, dass Sie sich für diesen Durchflusssensor entschieden haben. Bitte lesen Sie vor Montage und Inbetriebnahme diese Installations- und Betriebsanleitung aufmerksam durch und befolgen Sie unsere Hinweise. Nur bei genauer Beachtung der beschriebenen Vorschriften und Hinweise wird die einwandfreie Funktion des Durchflusssensors und ein gefahrloser Betrieb sichergestellt.

ipf electronic gmbh Rosmarter Allee 14 58762 Altena

Die ipf electronic gmbh wird gesetzlich vertreten durch:

Hr. Dirk Neuhaus Hr. Christian Fiebach

HRB Iserlohn 4151 Ust.-IDNr. DE 125800498

Tel +49 2351 9365-0 Fax +49 2351 9365-19 Web www.ipf.de Email info@ipf.de

II.	. Inhaltsverzeichnis	
I.	Vorwort	2
II.	Inhaltsverzeichnis	3
1	Bestimmungsgemäßer Gebrauch	5
2	Sicherheitshinweise	5
3	Gerätebeschreibung	6
4	Technische Daten	7
5	Skalierung Analogausgang Luft	8
6	Einbauhinweise	
•	6.1 Einbau	
7	Messbereiche	10
7	7.1 Durchfluss verschiedene Gase	10
8	Abmessungen	11
9	Elektrischer Anschluss	12
g	9.1 Modbus, 420mA, Puls, MBus & Ethernet	12
9	9.2 Anschlussdiagramme	
	9.2.2 420mA / Impuls 9.2.3 MBus	
	9.2.4 Ethernet (Optional PoE)	

10 Bedienung	15
10.1 Initialisierung	16
10.2 Hauptmenü nach dem Einschalten	16
10.3 Einstellungs Menü	17
10.3.1 Sensor Einstellungen	
10.3.1.1 Eingabe / Änderung des Rohrinnendurchmesser	
10.3.1.2 Eingabe / Änderung des Verbrauchszählerstandes	
10.3.1.3 Definition der Einheiten für Verbrauch, Strömung, Temperatur und Drud	
10.3.1.4 Erweiterte Einstellungen	
10.3.1.4.1 Einstellung der Referenzbedingungen (Bezugsnorm)	20
10.3.1.4.2 Einstellung der Filterzeiten	22
10.3.1.5 Einstellung Nullpunkt und Schleichmengenunterdrückung	
10.3.1.6 Druck Einstellungen	
10.3.2 Modbus Einstellungen	
10.3.2.1 Modbus RTU Setup	
10.3.3 Ethernet (Modbus TCP)	
10.3.3.1.1 Netzwerk Einstellungen DHCP	
10.3.3.2 Netzwerk Einstellungen statische IP	
10.3.3.3 Modbus TCP Einstellungen	
10.3.3.4 Modbus Settings (20012005)	
10.3.3.5 Values Register (10011500)	
10.3.4 Pulse /Alarm	
10.3.4.1 Impulsausgang	
10.3.5 Basis Einstell	
10.3.5.1 Passwort	
10.3.5.2 Sprache	
10.3.5.3 Display / Touch	
10.3.6 Erweitert	
10.3.7 4 -20mA	
10.4 MBus	
10.4.1 Kommunikations-Grundeinstellungen ab Werk	
10.4.2 Übertragungswerte	37
11 Status / Fehlermeldungen	38
-	
•	
11.2 Fehlermeldungen	39
12 Wartung	40
13 Reinigung des Sensorkopfes	40
14 Re-Kalibrierung	40
15 Ersatzteile und Reparatur	40
16 Kalibrierung	40
17 Garantie	40

1 Bestimmungsgemäßer Gebrauch

Der Verbrauchssensor dient der kontunierlichen Durchflussmessung..

Der Verbrauchssensor ist ausschließlich für den hier beschriebenen bestimmungsgemäßen Verwendungszweck konzipiert und konstruiert und darf nur dementsprechend verwendet werden.

Eine Überprüfung, ob das Gerät für den gewählten Einsatz geeignet ist, muss vom Anwender durchgeführt werden. Es muss sichergestellt werden, dass das Medium mit den medienberührten Teilen verträglich ist. Die im Datenblatt aufgeführten technischen Daten sind verbindlich.

Eine unsachgemäße Handhabung oder ein Betrieb außerhalb der technischen Spezifikationen ist unzulässig. Ansprüche jeglicher Art aufgrund von nicht bestimmungsgemäßer Verwendung sind ausgeschlossen.

Funktionsprinzip:

Die Verbrauchssonde arbeitet nach dem kalorimetrischen Messverfahren.

Grundlage dieses Messverfahren ist die elektrische Erwärmung des mechanisch geschützten eingebauten Sensors. Durch den entstehenden Wärmestrom an das vorbeiströmende Medium (Gas) lässt sich der Massenstrom, der Volumenstrom bzw. die Strömungsgeschwindigkeit messen und bestimmen.

Bei dem kalorimetrischen Messverfahren (bedingt durch Messprinzip), haben Betriebstemperatur und Druck des Mediums, keinen Einfluss auf das Messergebnis, es sind lediglich die Stoffdaten der Gaskomponente entscheidend.

2 Sicherheitshinweise

Vor Inbetriebnahme lesen!

Achtung: Druckbereich bis 16 bar nicht überschreiten.

Messbereiche des Messwertaufnehmers beachten!

Vorgegebene Anströmrichtung des Sensors unbedingt beachten!

Die Rohrleitung muss druckdicht eingeschraubt sein.

Kondensation auf dem Sensorelement oder Wassertropfen in der Messluft sind unbedingt zu vermeiden, denn sie führen zu fehlerhaften Messergebnissen.

Bei Nichtbeachtung oder Nichteinhaltung kann für daraus entstandene Schäden ein Anspruch auf Haftung nicht geltend gemacht werden. Eingriffe am Gerät jeglicher Art, sofern sie nicht den bestimmungsgemäßen und beschriebenen Vorgängen entsprechen, führen zum Gewährleistungsverfall und zum Haftungsausschluss.

Das Gerät ist ausschließlich für den beschriebenen Einsatzzweck bestimmt.

Wir übernehmen keinerlei Gewährleistung hinsichtlich der Eignung für irgendeinen bestimmten Zweck und keine Haftung für Fehler die in dieser Gebrauchsanweisung vorhanden sind. Ebenso wenig für Folgeschäden im Zusammenhang mit der Lieferung, Leistungsfähigkeit oder Verwendung des Gerätes.

Wir bieten Ihnen an, Geräte aus der Gerätefamilie, die Sie der Entsorgung zuführen wollen, von Ihnen zurückzunehmen.

Bitte Einstell- und Kalibrierarbeiten nur durch qualifiziertes Personal aus der Mess- und Regeltechnik durchführen lassen.

3 Gerätebeschreibung

Der neu entwickelte Sensor kombiniert moderne digitale Schnittstellen zur Anbindung an Energiemonitoring System mit einer kleinen,kompakten Bauart. Der Sensor kommt immer dann zum Einsatz, wenn viele Maschinen (Druckluftverbraucher) in ein Energiemonitoring-Netzwerk eingebunden werden soll.

Besondere Vorteile:

- Kompakte, kleine Bauweise zum Einsatz in Maschinen, hinter Wartungseinheit am Endverbraucher
- Einschraubgewinde für einfachen Einbau in vorhandene Rohrleitungen durch integrietem Messblock
 - Größen: ¼", ½" ¾", 1" 1 ¼", 1 ½" und 2"
- Integrierte Strömungsgleichrichter (keine Einlaufstrecken notwendig außer SL89002x)
- Integriertes Display mit Anzeige von 2 Werten
 - Duchfluss & Verbrauch,
 - Geschwindigkeit &Temperatur
- Bedienung über integrierte Tastatur
 - Einheiten Auswahl.
 - Frei wählbar : m³/h, m³/min, l/min, l/s, kg/h, kg/min, g/s, lb/min, lb/h Cfm, m/s,ft/min
 - Zählerstand rücksetzetn
 - Schnittstellen Paramentierung
- Schnittstellen digital
 - Modbus RTU (RS485)
 - Ethernet
 - MBus
- Schnittstellen analog
 - 4..20mA
 - Impulsausgang galv. isoliert.
- Druckmessung (optional)

Hinweis: Die optionale Service Software ermöglicht:

- Auswahl/ Umstellung der Gasart (Luft, Stickstoff, Argon, Lachgas, CO2, Sauerstoff)
- Kalierung Analogausgang 4..20mA
- Servicedaten auslesen
- Sensordiagnose

4 Technische Daten

Messgrößen: Durchfluss, Verbrauch und Geschwindigkeit

Referenznorm: Standardeinstellung ab Werk:

DIN 1945, ISO 1217 bei 20°C und 1000 mbar andere Normzustände über Tastatur oder Service

Software einstellbar

Einstellbare Einheiten m³/h (Standardeinstellung ab Werk)

m³/h, m³/min, l/min, l/s, kg/h, kg/min, g/s, lb/min, lb/h Cfm,

m/s,ft/min

Messprinzip: kalorimetrische Messung

Sensor: Pt45, Pt1000

Messmedium: Luft, Gase

Einsatztemperatur: -30 ... 80°C Fühlerrohr

-20 ... 70 °C Gehäuse

Betriebsdruck: bis 16 bar

Spannungsversorgung: 12 bis 36V DC

Leistungsaufnahme: max. 5W

Digitalausgang: RS 485 (Modbus RTU)

MBus (optinal)

Ethernet oder Ethernet-PoE (optional)

Analogausgang: 4...20mA (siehe Kapitel 4), max. Bürde < 500 Ohm

Impulsausgang: potenzialfreier Schaltkontakt

Passiv: max. 48Vdc,150mA

1 Impuls pro m³ bzw. pro I

Wertigkeit einstellbar über Display Tasten

Genauigkeit: ± 1,5 % v.M.*, ± 0,3 % v. E.*

Display: TFT 1.8" Auflösung 220 x 176 (optinal)

Montagegewinde:

G ¼",, G ½", G ¾", G1", G 1¼" G 1½", G 2"

Messblock

Material Messblock: Aluminium

Schutzklasse: IP65

^{*} v.M. = vom Messwert v.E. = vom Endwert

5 Skalierung Analogausgang Luft

Referenznorm DIN1945/ ISO 1217: 20°C, 1000 mbar (Referenz bei Abgleich der Sonden)

Bezeichnung	Version	Analogausgang	
	Low Speed		025 l/min
mit integriertem 1/" Meschlade	Standard	4 20 mA =	050 l/min
mit integriertem 1/4" Messblock	Max	4 20 MA -	0105 l/min
	High Speed		0130 l/min
	Low Speed		020 m³/h
mit intogriortom 1/" Masshlask	Standard	4 20 mA =	045 m³/h
mit integriertem ½" Messblock	Max	4 20 MA =	090 m³/h
	High Speed		0110 m³/h
	Low Speed		045 m³/h
weit into animate and 3/4 Manage land.	Standard	4 00 4 -	085 m³/h
mit integriertem ¾" Messblock	Max	4 20 mA =	0175 m³/h
	High Speed		0215 m³/h
	Low Speed		075 m³/h
anit into priorto an All Managh Logi.	Standard	4 20 mA =	0145 m³/h
mit integriertem 1" Messblock	Max		0290 m³/h
	High Speed		0355 m³/h
	Low Speed		0140 m³/h
	Standard	4 20 mA =	0265 m³/h
mit integrierterm 1 1/4" Messblock	Max	4 20 MA =	0530 m³/h
	High Speed		0640 m³/h
	Low Speed		0195 m³/h
mit integriertem 1 1/"Meschlade	Standard	4 20 mA =	0365 m³/h
mit integriertem 1 ½"Messblock	Max	4 ZU MA =	0730 m³/h
	High Speed		0885 m³/h
	Low Speed		0320 m³/h
mit integriertem 2" Messhlesk	Standard	4 20 mA =	0600 m ³ /h
mit integriertem 2" Messblock	Max	4 ZU IIIA –	01195m³/h
	High Speed		01450 m³/h

6 Einbauhinweise

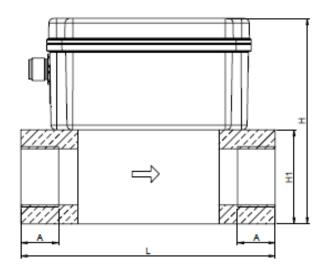
6.1 Einbau

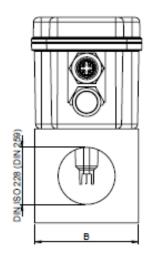
Der Sensor wird vormontiert zusammen mit dem Messblock ausgeliefert.

- Ein kundenseitigem Einbau ist nur im drucklosen Zustand der Anlage erlaubt.
- Dichtheit der Verbindung ist zu prüfen und sicherzustellen.

7 Messbereiche

7.1 Durchfluss verschiedene Gase

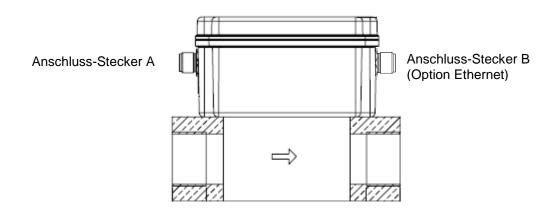

		1/4"	1/2"	3/4"	1"	1 1/4"	1 ½"	2"
		Analog- ausgang 20mA						
		l/min	[m³/h]	[m³/h]	[m³/h]	[m³/h]	[m³/h]	[m³/h]
Referenznorm DIN	N1945/ ISO 121	7: 20°C, 1	000 mbai	r (Referer	z bei Abg	leich der	Sonden)	
	Low Speed	25	20	45	75	140	195	320
	Standard	50	45	85	145	265	365	600
Luft	Max	105	90	175	290	530	730	1195
	High Speed	130	110	215	355	640	885	1450
Einstellung auf Di	N 1343: 0°C, 10)13,25 ml	oar					
	Low Speed	25	20	40	70	130	180	295
	Standard	50	40	80	135	240	335	550
Luft	Max	100	80	160	270	485	670	1100
	High Speed	120	100	195	325	590	815	1330
	Low Speed	45	35	75	120	220	305	505
Argon	Standard	85	70	135	230	415	570	935
(Ar)	Max	170	140	275	460	830	1140	1870
	High Speed	205	170	335	555	1005	1385	2265
	Low Speed	25	20	45	75	140	195	320
Kohlenstoffdioxid	Standard	50	45	85	145	260	360	590
(CO ₂)	Max	105	90	175	290	525	720	1185
	High Speed	130	105	210	350	635	875	1430
	Low Speed	25	20	40	70	130	180	295
Stickstoff	Standard	50	40	80	135	240	335	550
(N ₂)	Max	100	80	160	270	485	670	1100
	High Speed	120	100	195	325	590	815	1330
	Low Speed	25	20	45	75	135	185	305
Sauerstoff	Standard	50	40	80	140	250	345	570
(O ₂)	Max	100	85	165	280	505	695	1140
	High Speed	125	105	205	340	610	845	1380
	Low Speed	25	20	45	75	140	190	315
Lachgas	Standard	50	40	85	140	260	355	585
(N ₂ O)	Max	105	85	170	285	520	715	1170
	High Speed	125	105	210	345	630	865	1420


Andere Gase auf Anfrage

Hinweis:

Der Bereich außerhalb der Rohrleitung (Umgebungsbereich der Sonde) darf kein Ex-Bereich sein.

8 Abmessungen



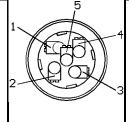
Nennweite	Anschluss Gewinde	L [mm]	B [mm]	H1 [mm]	H [mm]	A [mm]
DN 8	G 1/4"	135	55	50	109,1	15
DN 15	G 1/2"	135	55	50	109,1	20
DN 20	G 3/4"	135	55	50	109,1	20
DN 25	G 1"	135	55	50	109,1	25
DN 32	G1 1/4"	135	80	80	139,1	25
DN 40	G1 1/2"	135	80	80	139,1	25
DN 50	G 2"	135	80	80	139,1	30

9 Elektrischer Anschluss

9.1 Modbus, 4..20mA, Puls, MBus & Ethernet

Achtung: nicht benötigte Anschlüsse (NC) dürfen nicht auf Potenzial und/ oder Erde gelegt werden. Leitungen abschneiden und isolieren.

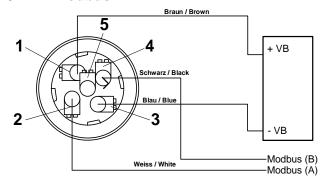
	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5
Anschlussstecker A (Version Modbus)	+VB	RS 485 (A)	-VB	RS 485 (B)	NC
Anschlussstecker A (Version 420mA))	+VB	Impuls galv. isoliert	-VB	Impuls galv. isoliert	I+ (420 mA)
Anschlussstecker A (Version MBus)	+VB	NC	-VB	MBus	MBus
Farben Anschlussleitungen 0553.0106 (5 m) 0553.0107 (10 m)	braun	weiss	blau	schwarz	grau


Legende:

-VB	Negative Versorgungsspannung 0 V
+VB	Positive Versorgungsspannung 1236 VDC geglättet
l +	Stromsignal 420 mA (ausgewähltes Messsignal)
RS 485 (A) RS 485 (B)	Modbus RTU A Modbus RTU B

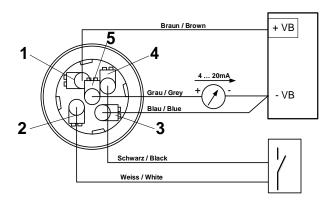
Impuls	Impuls für Verbrauch
NC	Nicht angeschlossen. Darf nicht auf Potenzial und/oder Erde gelegt werden. Bitte Leitungen abschneiden und isolieren.
MBus	MBus Anschluß (M-Bus ist verpolungssicher)

Wurde keine Anschlussleitung bestellt, wird der Sensor mit einem M12 Anschlussstecker geliefert. Der Anwender kann die Signale, wie im Anschluss-Diagramm dargestellt, verbinden.

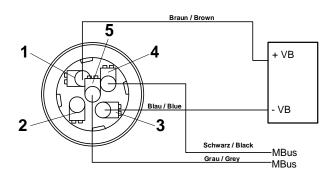


M12 Anschlussstecker

Ansicht Rückseite (Klemmenseite)


9.2 Anschlussdiagramme

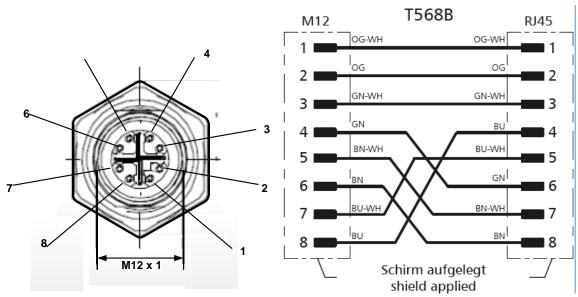
9.2.1 Modbus



Achtung: Wird der Sensor am Ende des Modbussystems eingesetzt ist eine Abschlussterminierung gefordert. Die Sensoren habe eine intern zuschaltbare Terminierung, dazu bitte die 4 Schrauben des Gehäusedeckels lösen und internen DIP Schalter auf "On" setzen. Beim Zusammenbau auf korrekten Sitz der Gehäusedichtung achten.

9.2.2 4..20mA / Impuls

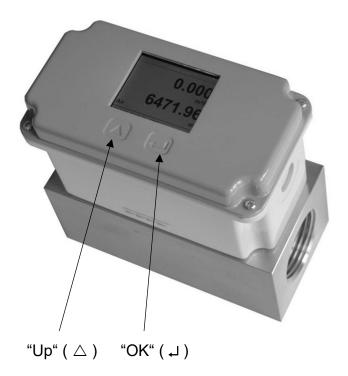
9.2.3 MBus



9.2.4 Ethernet (Optional PoE)

Anschlussstecker B M12 X-codiert 8 polig

Daten Leitungen: 1,2 und 3,4 PoE Leitungen: 5,6 und 7,8

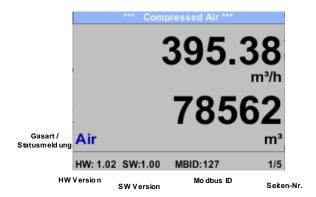

Anschlussleitung M12 X-codiert auf RJ45

Anschlussleitung: Cat 6.

*PoE: Power over Ethernet

10 Bedienung

Die Bedienung des Sensors erfolgt über die beiden kapazitiven Tasten Up (\triangle) und OK (\della)


10.1

Initialisierung

Flow Sensor

Nach dem Einschalten des Sensors erfolgt die Initialisierung, siehe links gefolgt von dem das Hauptmenü.

10.2 Hauptmenü nach dem Einschalten

Das Umschalten auf die Seiten 2-5 erfolgt mittels Taste " Δ "

Verfügbar nur mit Option "Druck" mbar 901.85 932.15 Air mbar HW: 1.02 SW:1.00 MBID:127 2/5. HW: 1.02 SW:1.00 Durchfluss: m³/hV Min Max Geschwi.: m/s ³/hV Min Max 395.38 83.25 0 207.45 870.87 55.92 152.87 Verbrauch: m3 Termperatur: °C 78562 24.1 21.3 82.7 23.7 24.6 MW-Zeit: 1440 Minuten 4/5 MW-Zeit: 1440 Minuten

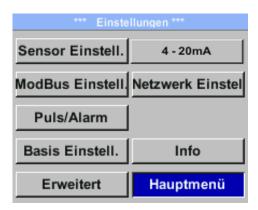
Die MW-Zeit (Zeitraum der Mittelwertbildung) kann über Sensor Einst.- Erweitert – MW-Zeit geändert werden.

10.3 Einstellungs Menü

Aus dem Hauptmenü ins Einstellungsmenü kommt man durch betätigen von "OK", Auswahl mit "△" der Taste "Ja" und anschließender Bestätigung mit "OK".

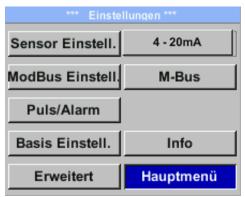
Jedoch ist Zugang zum Einstellungsmenü Password geschützt.

Passwort bei Auslieferung: 0000 (4 x Null).


Es kann bei Bedarf unter *Basis Einstell.-Passwort* geändert werden.

Einen Menüpunkt anzuwählen, Werte zu ändern muss die Taste "△" bestätigt werden, die Menüpunktauswahl sowie die Werte Bestätigung erfolgt mit der Taste "OK".

Menüpunkte


- 4..20mA / Puls-Alarm,
- Netzwerkeinstellung
- MBus

nur verfügbar bei entsprechender Sensorausführung.

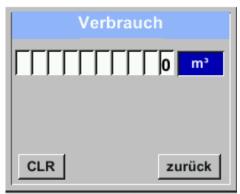
Hauptmenü

Erweitert

10.3.1 Sensor Einstellungen

Einstellungen → Sensor Einstell.

Um Änderungen vorzunehmen, zuerst einen Menüpunkt mit Taste "△" anwählen und anschließend mit Taste "*OK*" auswählen


10.3.1.1 Eingabe / Änderung des Rohrinnendurchmesser

Bei Geräten dieser Serie nicht veränderbar (gesperrt), da abgestimmt auf mitgelieferten Messblock mit entsprechendem Innendurchmesser.

10.3.1.2 Eingabe / Änderung des Verbrauchszählerstandes

Einstellungen → Sensor Einstell. → Verbrauch → Einheiten Taste

Um Änderungen, z.B. der Einheit, vorzunehmen, muss mittels Taste "△" das Tastenfeld "Einheit" angewählt werden und anschließend mit Taste "OK" auswählen Gewünschte Einheit mit Taste "△" auswählen und 2x mit Taste "OK" bestätigen / übernehmen.

Eingabe / Änderung des Verbrauchszählerstandes mittels Taste "△" die jeweilige Zahlenposition auswählen und mit Taste "OK" aktivieren.

Durch betätigen von "△" wird der Wert jeweils um 1 erhöht. Mit "OK" abschließen und nächste Zahlenposition aktivieren. Eingabe durch betätigen des Knopfes "OK" abschließen.

Einheiten Auswahl:

- entsprechend kapitel 10.3.1.3
- direkte Anwahl des Einheiten-Knopfes und Aufruf der Einheitenseite mit "OK"

Wichtig!

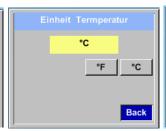
Der Zählerstand wird bei erreichen von 1000000000 m³ wieder auf Null zurück gesetzt.

10.3.1.3 Definition der Einheiten für Verbrauch, Strömung, Temperatur und Druck

Einstellungen → Sensor Einstell → Einheiten

Um Änderungen der Einheit für den jeweiligen Messwert vorzunehmen muss mittels Taste "△" das Tastenfeld des Messwertes angewählt werden und mit Taste "OK" aktiviert werden.

Auswahl der Messeinheit mittels Taste "△"

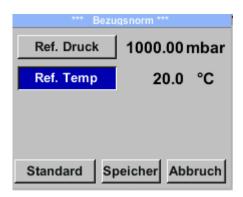

Im Falle das die Anzahl der Einheiten auf einer Seite nicht dargestellt werden können, kommt man mit Taste "<<" auf die nächste Seite.

Übernahme der Auswahl durch 2x betätigen der Taste "OK".

Vorgehensweise für alle 4 Messgrößen erfolgt analog.

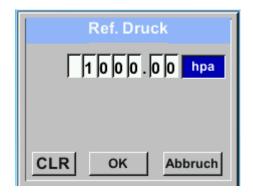
10.3.1.4 Erweiterte Einstellungen

Einstellungen → Sensor Einstell → Erweitert

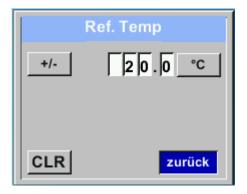

10.3.1.4.1 Einstellung der Referenzbedingungen (Bezugsnorm)

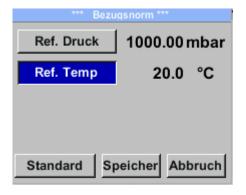
Hier können die gewünschten Messmedien-Referenzbedingungen für Druck und Temperatur definiert werden, sowie Zeiten für den Filter und Mitttelwertbildung.

Hinweis:


- Werkseinstellung für Referenztemperatur und Referenzdruck sind 20°C und 1000hPa.
- Alle im Display angezeigten Volumenstromwerte(m³/h) und Verbrauchswerte (m³) sind bezogen auf 20°C und 1000hPa (nach ISO 1217 Ansaugzustand).
- Alternativ kann auch 0°C und 1013 hPa (= Normkubikmeter) als Referenz eingegeben werden.
- Auf keinen Fall bei Referenzbedingungen den Betriebsdruck oder die Betriebstemperatur eingeben

Einstellungen → Sensor Einstell → Erweitert → Bezugsnorm




Um Änderungen vorzunehmen, zuerst einen Menüpunkt mit Taste "△" anwählen und anschließend mit Taste "OK" auswählen

Einstellungen → Sensor Einstell → Erweitert → Bezugsnorm → Ref. Druck

Einstellungen → Sensor Einstell → Erweitert → Bezugsnorm → Ref.Temp

Um Änderungen, z.B. der Einheit, vorzunehmen, muss mittels Taste "△" das Tastenfeld "Einheit" angewählt werden und anschließend mit Taste "OK" auswählen Gewünschte Einheit mit Taste "△" auswählen und 2x mit Taste "OK" bestätigen / übernehmen.

Eingabe / Änderung des Wertes mittels Taste "△" die jeweilige Zahlenposition auswählen und mit Taste "OK" aktivieren.

Durch betätigen von "△" wird der Wert jeweils um 1 erhöht. Mit "OK" abschließen und nächste Zahlenposition aktivieren.

Eingabe durch betätigen des Knopfes "OK" abschließen

Vorgehen für die Änderung der Referenztemperatur erfolgt analog.

Einheiten Auswahl:

- entsprechend kapitel 10.3.1.3
- direkte Anwahl des Einheiten-Knopfes und Aufruf der Einheitenseite mit "OK"

Im Falle von vorgrnommen Änderungen müssen diese mittels der Taste "Speicher" gespeichert werden.

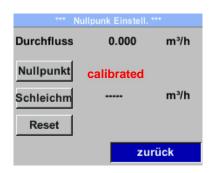
Mit betätigen der Taste "Standard" wird der Sensor auf die Einstellungen bei kalibration zurück gesetzt.

10.3.1.4.2 Einstellung der Filterzeiten

Einstellungen → Sensor Einstell → Erweitert → Filter/Mittelwert → Filterzeit

Unter dem Punkt "Filterzeit" kann eine Dämpfung festgelegt werden. Eingabe Werte von 0 -10000 in [ms] sind möglich.

Einstellungen → Sensor Einstell → Erweitert → Filter/Mittelwert → MW-Zeit


Die Zeitperiode für Mittelwertberechnung kann hier eingegegen werden.

Eingabe Werte von 1 -1440 [Minuten] sind möglich.

Mittelwerte siehe Anzeigefenster 3+4


10.3.1.5 Einstellung Nullpunkt und Schleichmengenunterdrückung

Einstellungen → Sensor Einstell. → Nullpunkt

Um Änderungen vorzunehmen, zuerst einen Menüpunkt mit Taste "△" anwählen und anschließend mit Taste "OK" auswählen

Einstellungen → Sensor Einstell. → Nullpunkt → Nullpunkt

Zeigt der Sensor im eingebauten Zustand ohne Durchfluß bereits einen Durchflußwert von > 0 m³/h kann man hier den Nullpunkt der Kennlinie setzen.

Bei Auswahl der Taste "Nullpunkt" und Start mit Taste "OK" wird eine automatische Nullpunktkalibrierung durchgeführt. Falls bereits eine Kalibrierung durchgeführt wurde, wird diese im Menü mit ""calibrated" angezeigt.

Verlassen des Menüs mit "Zurück"

Einstellungen → Sensor Einstell. → Nullpunkt → Schleichmengenunterdrückung

Die Schleichmengenunterdrückung kommt in Anwendung um Verbrauchswerte unterhalb des definierten "LowFlow Cut off" Wertes als 0 m³/h anzuzeigen und auch nicht zum Verbrauchzählerstand zu addieren.

Eingabe / Änderung des Wertes mittels Taste "△" die jeweilige Zahlenposition auswählen und mit Taste "OK" aktivieren.

Durch betätigen von "△" wird der Wert jeweils um 1 erhöht. Mit "OK" abschließen und nächste Zahlenposition aktivieren.

Eingabe durch betätigen des Knopfes "OK" abschließen

Verlassen des Menüs mit "Zurück"

Einstellungen → Sensor Einstell. → Nullpunkt → Reset

Durch Auswahl "Reset" werden Festlegungen für "Nullpunkt" bzw. "Schleichmenge" zurückgesetzt.

Menüpunkt mit Taste "△" anwählen und anschließend mit Taste "OK" auswählen

Verlassen des Menüs mit "Zurück"

10.3.1.6 Druck Einstellungen

Einstellungen → Sensor Einstell. → Druck

10.3.2 Modbus Einstellungen

10.3.2.1 Modbus RTU Setup

Der Durchflusssensor ist mit einer RS 485 Schnittstelle (Modbus RTU) ausgestattet. Vor der Inbetriebnahme des Sensors müssen die Kommunikationsparameter

Modbus ID, Baudrate, Parität und Stoppbit

eingestellt werden um eine Kommunikation mit dem Modbus Master zu

ermöglichen. Einstellungen -> Modbus Einstell.

Um Änderungen, z.B. der Sensor ID, vorzunehmen, wird mittels Taste "△" das Feld "ID" selektiert und anschließend mit Taste "OK" ausgewählt.

Gewünschte Position mit Taste "△" auswählen und mit Taste "OK" aktivieren.

Änderung der Werte mit Taste "△", Werte-Übernahme mit Taste "OK".

Eingaben für Baudrate, Stoppbit und Parity erfolgen analog.

Mittels der Taste "Byte Order" ist es möglich das Datenformat (Word Order) zu ändern. Mögliche Formate sind "ABCD" (Little Endian) und "CDAB" (Middle Endian)

Speicherung der Änderungen mittels Taste "Speichern".

Anwahl und Bestätigung mit Tasten "△" und "OK".

Standardeinstellungen ab Werk:

Modbus ID: 1
Baud rate: 19200
Stoppbit: 1
Parity: even
Byte Order: ABCD

Achtung: Wird der Sensor am Ende des Modbussystems eingesetzt ist eine Abschlussterminierung gefordert. Die Sensoren habe eine intern zuschaltbare Terminierung, dazu bitte die 4 Schrauben des Gehäusedeckels lösen und internen DIP Schalter auf "On" setzen.

Alternativ dazu kann auch ein 120R Widerstand im Stecker zwischen Pin 2 und Pin 4 verbaut werden. Beim Zusammenbau auf korrekten Sitz der Gehäusedichtung achten.

10.3.3 Ethernet (Modbus TCP)

Der Durchflußsensor ist optional mit einer Modbus TCP Schnittstelle (HW Interface: M12 x1X-codierte Buchsenstecker)) ausgestattet.

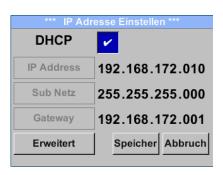
Der Sensor unterstützt mit dieserr Option das Modbus-TCP Protokoll für die Kommunikation mit SCADA-Systemen. Der TCP-Port ist standardmäßig auf 502 eingestellt. Port kann am Sensor oder mittels PC Service Software geändert werden

Die Modbus-Geräteadresse (Unit Identifier) kann zwischen 1-255 liegen. Spezifikation und Beschreibung des Modbus-Protokolls können Sie herunterladen unter: www.modbus.org.

Unterstützte Modbus-Befehle (Funktionen):

Befehlscode Beschreibung

Funktionscode 3 (Holdingregister lesen) Funktionscode 16 Mehrere Register schreiben)

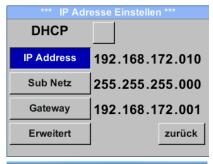

Siehe auch Anleitung Modbus RTU_TCP Installation V1.05

Einstellungen → Netzwerk Einstell.

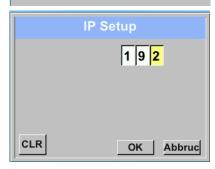
10.3.3.1.1 Netzwerk Einstellungen DHCP

Einstellungen → Netzwerk Einstell. → IP Address

Hier kann eine Verbindung, mit oder ohne *DHCP*, zu einem Rechner eingerichtet und hergestellt werden.


Hinweis:

Mit aktiviertem **DHCP** ist die automatische Einbindung des Sensors in ein vorhandenes Netzwerk, ohne dessen manuelle Konfiguration, möglich.

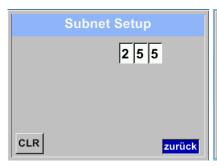

Übernahme der Einstellungen durch "Speichern".

10.3.3.2 Netzwerk Einstellungen statische IP

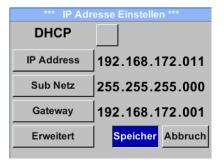
Einstellungen → Netzwerk Einstell. → IP Address → IP Address Einstellungen → Netzwerk Einstell. → IP Address → Sub Netz Einstellungen → Netzwerk Einstell. → IP Address → Gateway

Bei manueller (statischer) IP müssen die Auswahltasten "IP Address", "Subnetz" und "Gateway" ausgewählt und mit "OK" aktiviert werden.

Das erste Datenfeld der Auswahl, in diesem Fall der IP Adresse, wird dann markiert.(Rot).

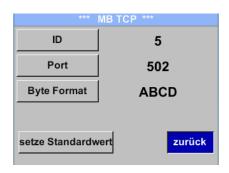

Bei bestätigen mit "OK" wird das entsprechende Eingabe Menü geöffnet.

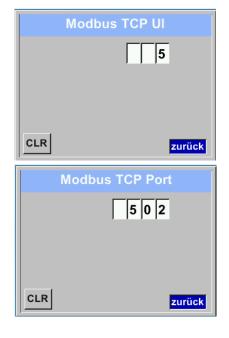
Mittels ">" wird auf das nächste Datenfeld gewechselt.


Gewünschte Position mit Taste ">" auswählen und mit Taste "OK" aktivieren.

Änderung der Werte mit Taste ">", Werte-Übernahme mit Taste "*OK*".

Vorgehen für "Sub Netz" und "Gateway" erfolgt analog.




Übernahme der Einstellungen durch "Speichern".

10.3.3.3 Modbus TCP Einstellungen

Einstellungen → Netzwerk Einstell. → MB TCP

Einstellungen → Netzwerk Einstell. → MB TCP → ID
Einstellungen → Netzwerk Einstell. → MB TCP → Port

Um Änderungen, z.B. der Sensor ID, vorzunehmen, wird mittels Taste ">" das Feld "ID" selektiert und anschließend mit Taste "OK" ausgewählt. Gewünschte Position mit Taste ">" auswählen und mit Taste "OK" aktivieren. Änderung der Werte mit Taste ">", Werte-Übernahme mit Taste "OK". Eingaben für Port erfolgt analog. Mittels der Taste "Byte Format" ist es möglich das Datenformat (Word Order) zu ändern. Mögliche Formate sind "ABCD" (Little Endian) und "CDAB" (Middle Endian) Speicherung der Änderungen mittels Taste "Speichern" Anwahl und Bestätigung mit Tasten ">" und "OK". Rücksetzen auf die Standardeinstellungen durch Betätigung "setze Standardwerte"

10.3.3.4 Modbus Settings (2001...2005)

Modbus Register	Register Adresse	No.of Byte	Data Type	Description	Default Setting	Read Write	Unit /Comment
2001	2000	2	UInt16	Modbus ID	1	R/W	Modbus ID 1247
2002	2001	2	UInt16	Baudrate	4	R/W	0 = 1200 1 = 2400 2 = 4800 3 = 9600 4 = 19200 5 = 38400
2003	2002	2	UInt16	Parity	1	R/W	0 = none 1 = even 2 = odd
2004	2003	2	UInt16	Number of Stopbits		R/W	0 = 1 Stop Bit 1 = 2 Stop Bit
2005	2004	2	UInt16	Word Order	0xABCD	R/W	0xABCD = Big Endian 0xCDAB = Middle Endian

10.3.3.5 Values Register (1001 ...1500)

Modbus Register	Register Adresse	No.of Byte	Data Type	Description	Def ault	Read Write	Unit /Comment
1101	1100	4	Float	Flow in m³/h		R	
1109	1108	4	Float	Flow in Nm³/h		R	
1117	1116	4	Float	Flow in m³/min		R	
1125	1124	4	Float	Flow in Nm³/min		R	
1133	1132	4	Float	Flow in ltr/h		R	
1141	1140	4	Float	Flow in Nltr/h		R	
1149	1148	4	Float	Flow in ltr/min		R	
1157	1156	4	Float	Flow in Nltr/min		R	
1165	1164	4	Float	Flow in ltr/s		R	
1173	1172	4	Float	Flow in Nltr/s		R	
1181	1180	4	Float	Flow in cfm		R	
1189	1188	4	Float	Flow in Ncfm		R	
1197	1196	4	Float	Flow in kg/h		R	
1205	1204	4	Float	Flow in kg/min		R	
1213	1212	4	Float	Flow in kg/s		R	
1221	1220	4	Float	Flow in kW		R	

Modbus Register	Register Adresse	No.of Byte	Data Type	Description	Default	Read Write	Unit /Comment
1269	1268	4	UInt32	Consumption m³ before comma	х	R	
1275	1274	4	UInt32	Consumption Nm³ before comma	х	R	
1281	1280	4	UInt32	Consumption ltr before comma	х	R	
1287	1286	4	UInt32	Consumption Nltr before comma	х	R	
1293	1292	4	UInt32	Consumption of before comma	x	R	
1299	1298	4	UInt32	Consumption Ncf before comma	х	R	
1305	1304	4	UInt32	Consumption kg before comma	х	R	
1311	1310	4	UInt32	Consumption kWh before comma	х	R	
1347	1346	4	Float	Velocity m/s			
1355	1354	4	Float	Velocity Nm/s			
1363	1362	4	Float	Velocity Ft/min			
1371	1370	4	Float	Velocity NFt/min			
1419	1418	4	Float	GasTemp °C			
1427	1426	4	Float	GasTemp °F			

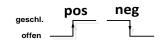
Hinweis:

- Für Handgeräte Modbus Sensor Datentyp
 - "Daten Typ R4-32" entspricht "Data Type Float"
- Für zusätzliche/weitere Modbus Werte siehe Modbus_RTU_Slave_Installation_1.04_DE.doc

10.3.4 Pulse /Alarm

Einstellungen→ Puls/ Alarm

Der gal. getrennte Ausgang kann als Puls-oder Alarmausgang definiert werden. Änderung durch Anwahl Taste "Relais Funktion" mit Taste "△" und Wechsel mit Taste "OK".


Bei Alarmausgang können folgende Einheiten (Units) Nm/s, m/s, Nm³/h, m³/h, Nltr/h, ltr/h, Nm³/min, m³/min, kg/s, kg/min,lb/s, lb/min, lb/h, SFPM, fpm, °C, °F gewählt werden.

"Wert" definiert den Alarmgrenzwert, "Hyst."
Definiert die gewünschte Hysterese und mit Taste
"überschreiten" bzw. "unterschreiten" festgelegt
wann Alarm anspricht.

Überschreiten: Wert überschreitend Unterschreiten: Wert unterschreitend

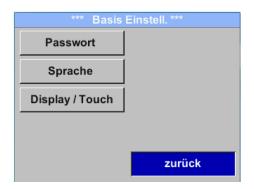
Bei Pulsausgang können folgende "Einheiten" kg, cf, SCF, ltr, Nltr, Nm³ und m³ gewählt werden. Die Pulswertigkeit kann unter "Wert" definiert werden. Die kleinste Pulswertigkeit ergibt sich aus max. messbarem Verbrauch und der max Impulsausgangsfrequenz des Sensors von 50 Hz.

Unter "Polarität" ist es möglich den Schaltzustand zu definieren. pos. = $0 \rightarrow 1$ neg. $1 \rightarrow 0$

10.3.4.1 Impulsausgang

Es können max. 50 Impulse pro Sekunde ausgegeben werden. Die Ausgabe der Impulse erfolgt verzögert um 1 Sekunde.

Pulswertigkeit	[m³ /h]	[m³/min]	[l/min]
0.1 ltr / Puls	18	0,3	300
1ltr / Puls	180	3	3000
0.1m³ / Puls	18000	300	300000
1 m³ / Puls	180000	3000	3000000


Tabelle 1 Maximale Durchflussmengen für Impulsausgang

Eingaben von Pulswertigkeiten die eine Darstellung für den Messbereichsendwert nicht ermöglichen werden nicht zugelassen. Eingaben werden verworfen und Fehlermeldung angezeigt.

10.3.5 Basis Einstell.

10.3.5.1 Passwort

Einstellungen → Basis Einstell. → Passwort

Um Änderungen vorzunehmen, zuerst einen Menüpunkt mit Taste "△" anwählen und anschließend mit Taste "OK" auswählen

Es kann jederzeit ein/neues Passwort vergeben werden. Dies besteht immer aus 4 Zahlen welche mit Taste "△" ausgewählt und anschließend mit Taste "OK" bestätigt werden. Mit Taste "△" wird jeweils letzte Ziffer gelöscht.

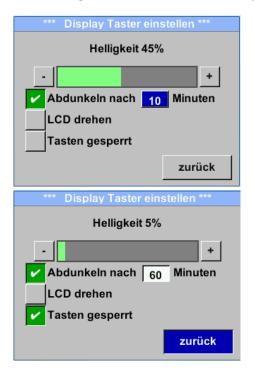
Passworteingabe muss zweimalig erfolgen.

Abschließende Übernahme durch Taste "OK"

Passwort bei Auslieferung: 0000 (4 x Null).

10.3.5.2 Sprache

Einstellungen → Basis Einstell. → Sprache


Aktuell sind derzeit 4 Sprachen integriert die mittels Taste "△" ausgewählt werden kann.

Aktivierung der Sprache durch Bestätigung mit Taste "OK".

Verlassen des Menüs bei Anwahl von "zurück" und Bestätigung mit Taste "OK".

10.3.5.3 Display / Touch

Einstellungen → Basis Einstell. → Display / Touch

Mit Taste "-" und Tasten "+" kann man die Displayhintergrundhelligkeit verändern. Helligkeitswert wird in Diagramm "Helligkeit" dargestellt.

Mittels Aktivierung von "Abdunkeln nach" und Eingabe einer Zeit wird ein Displaydimming gesetzt.

Mittels "*LCD drehen*" kann man die Displayanzeige um 180° verdrehen

Bei Aktivierung von "Tasten gesperrt" ist die Bedienung des Sensors verhindert/gesperrt.

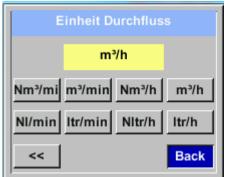
Entsperren/freischalten der Tastaur ist nur mittels Neustart des Sensors und Aufruf des Bedienungsmenü innerhalb der ersten 10s möglich. Dazu in diesem Zeitraum mittels "OK" das Bedienungsmenü aufrufen.

10.3.6 Erweitert

Einstellungen → Erweitert

Mit Taste "Werksreset" kann man den Sensor auf die Werkseinstellungen zurücksetzen.

10.3.7 4 -20mA


Einstellungen → 4-20mA

Um Änderungen vorzunehmen, zuerst einen Menüpunkt mit Taste "△" anwählen und anschließend mit Taste "OK" auswählen

Einstellungen →4-20mA → Kanal 1

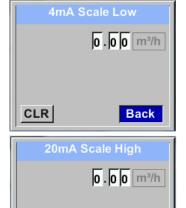
Der 4-20 mA Analogausgang des Sensors lässt sich individuell einstellen.

Es besteht die Möglichkeit die Messwerte "Temperatur", "Geschwindigkeit", "Durchfluss" zu wählen und dem Kanal zuzuordnen.

Um Änderungen vorzunehmen den Menüpunkt mit Taste "△" anwählen und anschließend mit Taste "OK" die entsprechende Messgröße auswählen bzw. den 4-20mA Ausgang mit "unused" zu deaktivieren.

Zu der ausgewählten Messgröße können unter "Unit" die entsprechenden Einheiten ausgewählt werden.


Mit Taste "△" anwählen und anschließend mit Taste "OK" die entsprechende Messgröße auswählen.


Hier Beispiel für den Durchfluß, Vorgehen für Strömungsgeschwindigkeit und Temperatur ist analog.

Übernahme der Eingaben durch "Speichern", verwerfen der Ändertungen mit "Abbruch".

Mit "zurück" wechsel in das Einstellungs-Menü.

Einstellungen →4-20mA → Kanal 1 → Auto Skalierung

CLR

Die Skalierung des 4-20mA kann automatisch mit "Auto Skalierung = ein" oder manuell "Auto Skalierung = aus" erfolgen. Mit Taste "△" die Anzeige "Auto Skalierung"

anwählen und anschließend mit Taste "OK" die gewünschte Skalierungsmethode auswählen.

"Skalierung 4mA" und "Skalierung 20mA" erlaubt die gewünschte Skalierung zu definieren, Bedingung ist das Auto Skalierung =aus.

Mit Taste "△" die Anzeige "Skalierung 4mA" bzw. "Skalierung 20mA" anwählen und anschließend mit Taste "OK" auswählen.

Eingabe erfolgt analog wie voran beschrieben, mittels "CLR" kann komplette Eingabe gelöscht werden.


Wird "Auto Skalierung" eingestellt, wird die Skalierung basierend auf Rohrdurchmesser, den für den Sensor max. gültigen Messbereich und Referenzbedingungen berechnet.

Übernahme der Eingaben durch "Speichern", verwerfen der Ändertungen mit "Abbruch".

Mit "zurück" wechsel in das Einstellungs-Menü.

Einstellungen → 4 -20mA → Fehler Strom

Back

Hiermit wird festgelegt was im Fehlerfall am Analogausgang ausgegeben wird.

- 2 mA Sensorfehler / Systemfehler
- 22 mA Sensorfehler / Systemfehler
- None Ausgabe nach Namur (3.8mA 20.5 mA) < 4mA bis 3.8 mA Messbereichsunterschreitung >20mA bis 20.5 mA Messbereichsüberschreitung

Um Änderungen vorzunehmen zuerst einen Menüpunkt "Error Current" mit Taste "△" anwählen und anschließend mit Taste "OK" den gewünschten Mode auswählen

Übernahme der Eingaben durch "Speichern", verwerfen der Ändertungen mit "Abbruch".

Mit "zurück" wechsel in das Einstellungs-Menü.

10.3.8 Info

Einstellungen → Info

Kurze Beschreibung der Sensordaten incl. der Kalibrierungsdaten.

Unter **Details** erhält man zusätzlich die Kalibrierbedingungen.

10.4 MBus

Einstellungen → MBus

Der Sensor bietet 2 Möglichkeiten für Kodierung des Value Informaition Field (VIF).

- Primary VIF (Die Einheiten und Multiplikatoren entsprechen MBus Spezifikation Kapitel 8.4.3
- Plain text VIF (Einheiten werden als ASCCII zeichen übertragen, somit sind auch Einheiten möglich die nicht in MBus Spezifikation Kapitel 8.4.3 enthalten sind

Umstellung auf Plain Text VIF durch Aktivierung von "Einheiten als Text"

10.4.1 Kommunikations-Grundeinstellungen ab Werk

Primary Adress*: 1

ID: Seriennummer des Sensors

Baud rate*: 2400

Medium*: abhängig von Medium (Gas oder Compressed Air)

VIF Kodierung: Primary VIF

Im M-Bus-System können beide Addressen, Primary Adress und ID, im automatischen Suchlauf erfasst werden

10.4.2 Übertragungswerte

Wert 1 mit [Einheit]*: Verbrauch [m³]]
Wert 2 mit [Einheit]*: Durchfluss[m³/h]
Wert 3 mit [Einheit]*: Gastemperatur [°C]

^{*}Alle Werte können in der Produktion geändert / voreingestellt werden oder Vorort mit der Service Software geändert / eingestellt werden

11 Status / Fehlermeldungen

11.1 Statusmeldungen

CAL

Seitens ipf electronic gmbh wird eine regelmäßiger Re-Kalibrierung empfohlen, siehe Kapitel 13. D.h. bei Auslieferung wird intern das Datum eingetragen bei der die nächste Re-Kalibrierung empfohlen wird. Nach Erreichen dieses Datum wird, erfolgt ein Hinweis im Display durch die Statusmeldung "*Cal*".

Hinweis: Die Messung wird ohne Unterbrechung oder Einschränkung weitergeführt

Direction

Bei Anwendung zusammen mit einem Richtungsschalter erfolgt die Statusmeldung "Direction" wenn Durchflussrichtung entgegengesetzt und keine Messung erfolgen darf.

Statusmeldungen:

11.2 Fehlermeldungen

Low Voltage

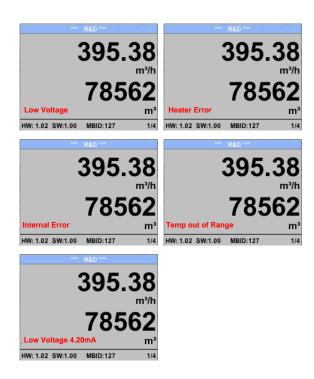
Bei einer Versorgungsspannung kleiner 11V wird die Warnmeldung "Low Voltage" angezeigt. Dies bedeutet der Sensor kann nicht mehr ordnungsgemäß arbeiten / messen und somit stehen keine Messwerte für Duchfluss, Verbrauch sowie Geschwindigkeit zur Verfügung.

Heater Error

Die Fehlermeldung "Heater Error" erfolgt bei Ausfall des Heizsensor.

Internal Error

Im Falle dieser Meldung "Internal Error" hat der Sensor einen internen Lesefehler auf z.B. EEProm , AD-Wandler etc. festgestellt.


Temp out of Range

Bei Medientemperaturen außerhalb des spezifizierten Temperaturbereiches erfolgt die Status Meldung "*Temp out of Range"*. Dies führt zu inkorrekten Messwerte (außerhalb der Sensorspezifikation)

Low Voltage 4-20mA

Bei Sensoren mit einem galvanisch isoliertem 4-20mA Ausgang wird eine min. Versorgungsspannun von 17.5V benötigt. Wird diese unterschritten erfolgt die Fehlermeldung "Low Voltage 4-20mA"

Fehlermeldungen:

12 Wartung

Der Sensorkopf ist regelmäßig auf Verschmutzung zu untersuchen und bei Bedarf zu reinigen. Durch Ablagerungen von Schmutz, Staub oder Öl auf dem Sensorelement entsteht eine Messwertabweichung.

Die Überprüfung wird jährlich empfohlen, bei starker Verunreinigung der Druckluft verringert sich das Überprüfungsintervall.

13 Reinigung des Sensorkopfes

Der Sensorkopf kann durch vorsichtiges Schwenken in warmem Wasser unter Zugabe von geringen Mengen eines Spülmittels gereinigt werden. Mechanisches Einwirken auf den Sensor (z.B. mittels Schwamm oder Bürste) kann den Sensor zerstören. Sind die Verunreinigungen zu stark bleibt nur eine Überprüfung und Wartung durch ipf electronic gmbh.

14 Re-Kalibrierung

Sind keine kundenseitigen Vorgaben getroffen, empfehlen wir ein Kalibrierintervall von 12 Monaten. Der Sensor ist hierzu an ipf electronic gmbh einzusenden.

15 Ersatzteile und Reparatur

Ersatzteile sind aus Gründen der Messgenauigkeit nicht verfügbar. Bei Defekten sind die Sensoren an den Lieferanten zur Reparatur einzusenden.

Beim Einsatz der Messgeräte in betriebswichtigen Anlagen empfehlen wir die Bereithaltung eines Ersatzmesssystems.

16 Kalibrierung

Wir empfehlen im Rahmen der DIN ISO Zertifizierung die Messgeräte in regelmäßigen Abständen kalibrieren und gegebenenfalls justieren zu lassen. Die Kalibrierzyklen sollten sich nach Ihrer internen Festlegung richten. Im Rahmen der DIN ISO Zertifizierung empfehlen wir für den Sensor einen Kalibrierzyklus von einem Jahr.

Auf Wunsch lassen sich gegen Berechnung Kalibrierzertifikate erstellen. Die Präzision ist hier über von der DKD-zertifizierte Volumenstrommessgeräte gegeben und nachweisbar.

17 Garantie

Mängel, die nachweislich auf einem Werksfehler beruhen, beheben wir selbstverständlich kostenlos. Voraussetzung ist, dass Sie diesen Mangel unverzüglich nach Feststellung und innerhalb der von uns gewährten Garantiezeit melden. Schäden, die durch nicht bestimmungsgemäßen Gebrauch sowie infolge von Nichtbeachtung der Bedienungsanleitung entstanden sind, sind von dieser Garantie ausgenommen.

Die Garantie entfällt außerdem, wenn das Messgerät geöffnet wurde – soweit dies nicht ausdrücklich in der Bedienungsanleitung zu Wartungszwecken beschrieben ist – oder aber Seriennummern im Gerät verändert, beschädigt oder entfernt wurden.

Die Garantiezeit beträgt für den Sensor SL89_900021 Verbrauchszähler 12 Monate. Wenn nicht anders definiert, gelten für Zubehörteile 6 Monate. Garantieleistungen bewirken keine Verlängerung der Garantiefrist. Wurden neben der Garantieleistung notwendige Reparaturen, Justagen oder dergleichen durchgeführt, sind die Garantieleistungen kostenlos, die anderen Leistungen werden aber ebenso wie Transport und Verpackung berechnet. Weitergehende oder andere Ansprüche, insbesondere bei entstandenen Schäden die nicht das Gerät betreffen, sind – soweit eine Haftung nicht zwingend gesetzlich vorgeschrieben ist – ausgeschlossen.

Leistungen nach der Garantiezeit

Selbstverständlich sind wir auch nach Ablauf der Garantiezeit für Sie da. Bei Funktionsstörungen senden Sie uns Ihr Messgerät mit einer kurzen Fehlerbeschreibung.