SDS1000X SDS1000X+ Series Digital Oscilloscope

SIGLENT TECHNOLOGIES CO.,LTD

SDS1102X SDS1202X SDS1102X+ SDS1202X+

Overview

SIGLENT's new SDS1000X/SDS1000X+ Series Super Phosphor Oscilloscopes are available in two bandwidths, 100 MHz and 200 MHz, have a sampling rate of 1 GSa/s and a standard record length of 14 Mpts. The most commonly used functions can be accessed with its user-friendly one-button design.

The SDS1000X/SDS1000X+ series employs a new generation of SPO technology. With its excellent signal fidelity, background noise is lower than similar products in the industry. It has a minimum vertical input range of 500 uV/div, an innovative digital trigger system with high sensitivity and low jitter, and a waveform capture rate of 60,000 frames/sec. It also employs not only the common 256-level intensity grading display function but also a color temperature display mode not found in other models in this class. Siglent's new oscilloscopes offering supports multiple powerful triggering modes including serial bus triggering and decoding. History waveform recording and sequential triggering allow for extended waveform records to be captured, stored, and analyzed. SDS1000X+ adds an integrated 25 MHz arbitrary waveform generator (standard), option for 16 digital channels. The features and high-performance of the SDS1000X/SDS1000X+ oscilloscopes cannot be matched else anywhere at this price.

Key Features

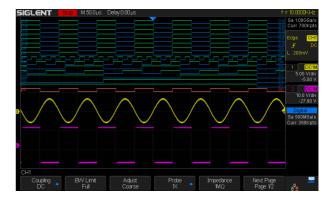
- 🚣 200 MHz, 100 MHz bandwidth models
- Real-time sampling rate up to 1 GSa/s
- New generation of SPO technology
 - Waveform capture rate up to 60,000 wfm/s (normal mode), and 400,000 wfm/s (sequence mode)
 - Supports 256-level intensity grading and color temperature display
 - Record length up to 14 Mpts
 - Digital trigger system
- Intelligent trigger: Edge, Slope, Pulse Width, Window, Runt, Interval, Time out (Dropout), Pattern
- Serial bus triggering and decode, supports protocols IIC, SPI, UART, RS232, CAN, LIN
- 🜆 Video trigger, supports HDTV
- Low background noise, supports 500µV / div to 10V / div voltage scales
- 10 types of one-button shortcuts, supports Auto Setup, Default, Cursors, Measure, Roll, History, Display/Persist, Clear Sweep, Zoom and Print
- Segmented acquisition (Sequence) mode, dividing the maximum record length into multiple segments (up to 80,000), according to trigger conditions set by the user, with a very small dead time segment to capture the qualifying event.
- History waveform record (History) function, the maximum recorded waveform length is 80,000 frames.
- Automatic measurement function on 37 parameters, supports Statistics, Gating measurement, Math measurement, History measurement and Ref measurement
- Math function (FFT, addition, subtraction, multiplication, division, integration, differential, square root)
- IIII High Speed hardware based Pass/ Fail function
- I6 Digital channels (MSO), Maximum waveform capture rate up to 500 MSa/s, Record length up to 14 Mpt/CH (Option for SDS1000X+ models)
- 25 MHz DDS arbitrary waveform generator, built-in 10 kinds of waveforms (Standard for SDS1000X+ models)
- Large 8 inch TFT-LCD display with 800 * 480 resolution
- Abundant interfaces: USB Host, USB Device (USB-TMC), LAN (VXI-11), Pass / Fail, Trigger Out
- Supports SCPI remote control commands

WWW.SIGLENT.COM

Models and Key Specifications

Model	SDS1102X SDS1102X+	SDS1202X SDS1202X+
Bandwidth	100 MHz	200 MHz
Sampling Rate (Max.)	1 GSa/s	
Channels	2+EXT	
Memory Depth (Max.)	7 Mpts/CH (Dual-Channel); 14 Mpts/CH (Single-Channel)	
Waveform Capture Rate (Max.)	60,000 wfm/s (normal mode), 400,000 wfm/s (sequence mode)	
Trigger Type	Edge, Slope, Pulse width, Window, Runt, Interval, Dropout, Pattern, Video	
Serial Trigger	I ² C, SPI, UART/RS232, CAN, LIN	
Decode Type (Optional)	I ² C, SPI, UART/RS232, CAN, LIN	
DDS Waveform Generator	Single Channel, Max. Frequency up to 25 MHz, 125 MSa/s sampling	rate, 16 Kpts wave length
	SDS1000X+ Supported (Standard); SDS1000X Not supported	
16 Digital Channels (MSO	Maximum waveform capture rate up to 500 MSa/s, Record length u	p to 14 Mpts/CH
Option)	SDS1000X+ Supported (Optional); SDS1000X Not supported	
Logic Probe	SPL1016 (Optional)	
I/O	USB Host, USB Device, LAN, Pass/Fail, Trigger Out, 1 KHz Cal	
Probe (Std)	2 pcs passive probe PP510	2 pcs passive probe PP215
Display	8 inch TFT-LCD (800x480)	
Weight	Without package 3.26 Kg; with package 4.25 Kg	

Function & Characteristics

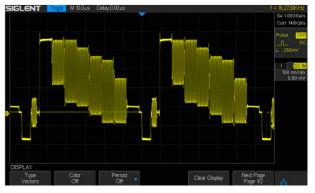

8 inch TFT-LCD display and 10 one-button menus

8-inch TFT-LCD display with 800 * 480 resolution

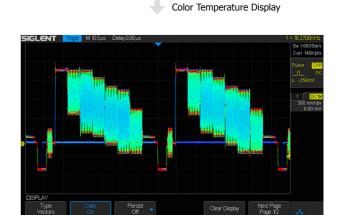
Most commonly used functions are accessible using 10 different one-button operation keys: Auto Setup, Default, Cursor, Measure, Roll, History, Persist, Clear Sweep, Zoom, Print

16 Digital Channels/MSO (Optional for SDS1000X+)

2 analog channels plus 16 digital channels enables users to acquire and trigger on the waveforms then analyze the pattern, simultaneously with one instrument.


Characteristics

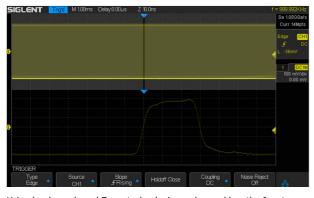
Waveform capture rate up to 400,000 wfms/s



With a waveform capture rate of up to 400,000 wfm/s (sequence mode), the oscilloscope can easily capture the unusual or low-probability events.

256 intensity grading and color temperature display

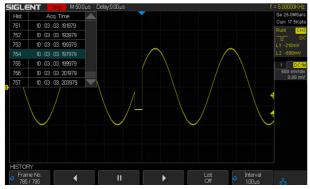
SPO display technology provides for fast refresh rates. The resulting intensity-graded trace is brighter for more often-occurring display points and dimmer in less-often-occurring points

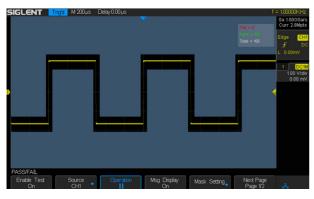


The color temperature display is similar to the intensity-graded trace except that the trace occurrence is represented by different colors (color "temperature") as opposed to changes in the intensity of one color. Red represents the most common occurrences or probabilities while blue is the least common points.

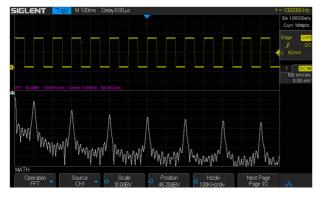

SDS1000X/SDS1000X+ displays the decoding through the events list. Bus protocol information can be quickly and intuitively displayed in table form.

Record length of up to 14 Mpts

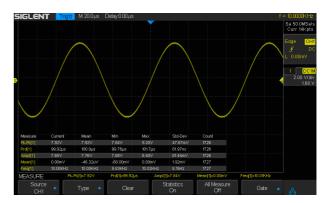

Using hardware-based Zoom technologies and record length of up to 14 Mpts, users are able to use a higher sampling rate to capture more of the signal, and then quickly zoom in to focus on the area of interest


SDS1000X/SDS1000X+ has a wealth of trigger modes, including Edge, Slope, Pulse, Video, Windows, Runt, Interval, Time out (Dropout), Pattern, IIC, SPI, UART/RS232, LIN, CAN

History Waveforms (History) mode and segmented acquisition (Sequence)


Playback history waveform to observe unusual events and locate the source quickly through the cursor or measurements, located on the keyboard Panel, this function is easily enabled. Segmented memory collection will store the waveform into multiple (up to 80,000) memory segments, each segment will store a triggered waveform and dead time information

Hardware-Based High Speed Pass/Fail Function


The SDS1000X/SDS1000X+ utilizes a hardware-based Pass / Fail function, performing up to 40,000 Pass / Fail decisions each second. With easy to generate user-defined test templates, the SDS1000X/SDS1000X+ compares the current measured trace to the template mask trace making it suitable for long-term signal monitoring or automated production line testing.

Advanced Math Function

In addition to the traditional (+, -, X, /) operation, SDS1000X/ SDS1000X+ oscilloscopes supports FFT, integration, differentiation, and square root operations.

Comprehensive statistical functions

Parametric statistical functions to display any parameters of the five measurements: current, average, minimum value, maximum value, and the standard deviation. The measurement count is also displayed. The maximum number of parameters that can be measured and simultaneously analyzed statistically is five. Supports Gating measurements, Math measurement, History measurement, Ref measurement.

Built-in 25 MHz function/arbitrary waveform generator (Standard for SDS1000X+ Models)

The SDS1000X+ has a built-in 25 MHz function / arbitrary waveform generator (standard), including 10 built-in waveforms plus 4 ARBs. The arbitrary waveforms can be accessed and edited by the EasyWave PC software

Complete connectivity

SDS1000X/SDS1000X+ supports USB Host, USB Device (USB-TMC), LAN(VXI-11), Pass/Fail and Trigger Out

Specifications

Acquire System		
Sampling Rate	1 GSa/s (Single-Channel), 500 MSa/s (Daul-Channel)	
Memory Depth	Max 14 Mpts/Ch (Single-Channel), 7 Mpts/Ch (Dual- Channel)	
Peak Detect	1 ns	
Average	Averages: 4,16, 32,64,128,256,512,1024	
Eres	Enhance bits: 0.5, 1, 1.5, 2, 2.5, 3 Selectable	
Waveform interpolation	Sinx/x, Linear	

Input		
Channel	2	
Coupling	DC, AC, GND	
Impodance	DC: (1 MΩ±2%) (18 pF ±2 pF)	
Impedance	50 Ω: 50 Ω±2%	
Max Input voltage	1 MΩ ≤400 Vpk(DC + Peak AC <=10 kHz),	
Max Input Voltage	50 Ω ≤5 Vrms	
CH to CH Isolation	DC~Max BW >40 dB	
Probe attenuator	1 X, 10 X, 50 X, 100 X, 500 X , 1000 X	

Vertical System	
Pandwidth (2 dP)	200 MHz (SDS1202X/SDS1202X+) 100 MHz (SDS1102X/SDS1102X+)
Vertical Resolution	8 bit
Vertical Scale (Probe 1X)	500 µV/div - 10 V/div (1-2-5)
Offset Range (Probe 1X)	500 μV ~ 150 mV: ± 1 V 152 mV ~ 1.5 V: ± 10 V 1.52 V ~ 10 V: ± 100 V
Bandwidth Limit	20 MHz ±40%
	DC ~ 10%(BW): ± 1 dB 10% ~ 50%(BW): ± 2 dB 50% ~ 100%(BW): + 2 dB / -3 dB
Low Frequency Response (AC-3 dB)	≤10 Hz (at input BNC)
NUISE	ST-DEV ≤0.7 division (<1 mV/div) ST-DEV ≤0.3 division(<2 mV/div) ST-DEV ≤0.2 division(≥2 mV/div)
SFDR including harmonics	≥35 dB
DC Gain Accuracy	≤±3.0%: 5 mV/div ~10 V/div ≤±4.0%: ≤2 mV/div
Offset Accuracy	±(1%* Offset+1.5%*8*div+2 mV): ≥2 mV/div ±(1%* Offset+1.5%*8*div+500 uV): ≤1 mv/div
	Typical 1.8 ns (SDS1202X/SDS1202X+) Typical 3.5 ns (SDS1102X/SDS1102X+)
Overshoot (500 ps Pulse)	<10%

Horizontal System	
Time base Scale	2.0 ns/div ~ 50 s/div
Channel Skew	<100 ps
Waveform Capture Rate	Up to 60,000 wfm/s (normal mode), 400,000 wfm/s (sequence mode)
Intensity grading	256 Levels
Display Format	Y-T, X-Y, Roll
Time base Accuracy	±25 ppm
Roll Mode	50 ms/div ~ 50 s/div (1-2-5 step)

Trigger System	
Trigger Mode	Auto, Normal, Single
	Internal: ±4.5 div from the center of the screen
Trigger Level	EXT: ±0.6 V
	EXT/5: ±3 V
Hold-off Range	80 ns ~ 1.5 s
Trigger Coupling	AC , DC, LFRJ, HFRJ , Noise RJ (CH1~CH2)
	DC: Passes all components of the signal
Coupling Frequency Decouped	AC: Blocks DC components and attenuates signals below 5.8 Hz
Coupling Frequency Response (CH1~CH2)	LFRJ: Blocks the DC component and attenuates the low-frequency components below 2 MHz
	HFRJ: Attenuates the high-frequency components above 1.27 MHz
	DC: Passes all components of the signal
Coupling Frequency Response	AC: Blocks DC components and attenuates signals below 30 Hz
(EXT)	LFRJ: Blocks the DC component and attenuates the low-frequency components below 300 Hz
. ,	HFRJ: Attenuates the high-frequency components above 7 MHz
Trigger Accuracy (Typical)	Internal: ±0.2 div EXT: ±0.4 div
Trigger Sensitivity	CH1~CH2: DC~ Max BW 0.6 div EXT: 200 mVpp DC ~ 10 MHz 300 mVpp 10 MHz ~ BW frequency EXT/5: 1 Vpp DC ~ 10 MHz 1.5 Vpp 10 MHz ~ BW frequency
Trigger Jitter	<100 ps (CH1~CH2)
Trigger Displacement	Pre-Trigger: 0~100% Memory Delay Trigger: 0 to 10,000 div

Slope Trigger	
Slope	Rising, Falling
Limit Range	<, >, <>, ><
Source	CH1/CH2
Time Range	2 ns ~ 4.2 s
Resolution	1 ns
Edge Trigger	
Slope	Rising, Falling, Rising & Falling
Source	CH1/CH2 /EXT/(EXT/5)/AC Line
Pulse Trigger	
Polarity	+wid , -wid
Limit Range	<, >, <>, ><
Source	CH1/CH2
Pulse Range	2 ns ~ 4.2 s
Resolution	1 ns
Video Trigger	
Signal Standard	NTSC, PAL, 720p/50, 720p/60, 1080p/50, 1080p/60, 1080i/50,
Source	1080i/60, Custom
Source	CH1/CH2
Sync	Any, Select
Trigger condition	Line, Field
Interval Trigge	r
Slope	Rising, Falling
Limit Range	<, >, <>, ><
Source	CH1/CH2

Batter Fly s.r.l. - Tel. (+39) 051 6468377 - info@batterfly.com - www.batterfly.com - Italy

Time Range

Resolution

2 ns ~ 4.2 s

1 ns

SDS1000X/SDS1000X+ Digital Oscilloscope

Dropout Trigger	
Time out Type	Edge, State
Source	CH1/CH2
Slope	Rising, Falling
Time Range	2 ns ~ 4.2 s
Resolution	1 ns

Runt Trigger		
Polarity	+wid , -wid	
Limit Range	<, >, <>, ><	
Source	CH1/CH2	
Time Range	2 ns ~ 4.2 s	
Resolution	1 ns	
Pattern Trigger		
Pattern Setting	Invalid, Low, High	
Logic	AND, OR, NAND, NOR	
Source	CH1/CH2	
Limit Range	<, >, <>, ><	
Time Range	2 ns ~ 4.2 s	
Resolution	1 ns	
Window Trigger		

Window TypeAbsolute, RelativeSourceCH1/CH2

Serial Trigger	
I ² C Trigger	
Condition	Start, Stop, Restart, No Ack, EEPROM, 7 bits Address & Data, 10 bits Adress & Data, Data Length
Source (SDA/SCL)	CH1, CH2
Data format	Hex
Limit Range	EEPROM: =, >, <
Data Length	EEPROM: 1 byte
	Addr & Data: 1~2 byte
	Data Length: 1~12 byte
R/W bit	Addr & Data: Read, Write, Do not care

SDI Triggor	
SPI Trigger	
Condition	Data
Source (CS/CL/Data)	CH1, CH2
Data format	Binary
Data Length	4 ~ 96 bit
Bit Value	0, 1, X
Bit Order	LSB, MSB
UART/ RS232 T	rigger
Condition	Start, Stop, Data, Parity Error
Source (RX/TX)	CH1, CH2
Data format	Hex
Limit Range	=, >, <
Data Length	1 byte
Data Width	5 bit, 6 bit, 7 bit, 8 bit
Parity Check	None, Odd, Even
Stop Bit	1 bit, 1.5 bit, 2 bit
Idle Level	High, Low
Baud (Selectable)	600/1200/2400/4800/9600/19200/38400/57600/115200 bit/s
(Custom)	300 bit/s ~ 334000 bit/s

CAN Trigger	
Condition	All, Remote, ID, ID + Data, Error
Source	CH1,CH2
ID	STD (11 bit), EXT (29 bit)
Data Format	Hex
Data Length	1~2 byte
Baud Rate (Selectable)	5k/10k/20k/50k/100k/125k/250k/500k/800k/1M bit/s
Baud Rate (Custom)	5 kbit/s~1 Mbit/s
LIN Trigger	
Condition	Break, Frame ID, ID+Data, Error
Source	CH1, CH2
ID	1 byte
Data Format	Hex
Data Length	1~2 byte
Baud Rate (Selectable)	600/1200/2400/4800/9600/19200 bit/s
Baud Rate (Custom)	300 bit/s~20 kbit/s

Serial Decoder ((Optional)
I ² C Decoder	
Signal	SCL, SDA
Address	7bit, 10 bit
Threshold	-4.5~4.5 div
List	1~7 lines
SPI Decoder	
Signal	SCL, MISO, MOSI, CS
Edge Select	Rising, Falling
Idle	Low, High
Bit Order	MSB, LSB
Threshold	-4.5~4.5 div
List	1~7 lines
UART/ RS232 D	ecoder
Signal	RX, TX
Data Width	5 bit, 6 bit, 7 bit, 8 bit
Parity Check	None, Odd, Even
Stop Bit	1 bit, 1.5 bit, 2 bit
Idle Level	Low, High
Threshold	-4.5~4.5 div
List	1~7 lines
CAN Decoder	
Signal	CAN_H, CAN_L
Source	CAN_H, CAN_L, CAN_H-CAN_L
Threshold	-4.5~4.5 div
List	1 ~ 7 lines
LIN Decoder	
LIN Specification Package Revision	Ver1.3, Ver2.0
Threshold	-4.5 ~ 4.5 div
List	1 ~ 7 lines

Same Minder of Measurement Range Oppose Twestwents at the same time Measurement Range Sequencies the same time Measurement Range Measurement Range Secret region Measurement Range Main Malent entropic week week measurement Range Main Difference between maximum and minimum data values Main Value of most probabile linker state in a bimodal weedom Main Value of most probabile linker state in a bimodal weedom Main Nate of deviation of al data values Main Standard deviation of al data values Main Standard deviation of al data values Main Standard deviation of al data values Main Row may supper of al data values Main Overshoot after a railing edge(max-top)/amplitude Main Main Main Main Main Main Main Main Main Main Main Main Main	Measure System			
MeasurementsSearcher regionMeasurements areSearcher regionMeasurements areUser studie in input wordernMinCovers tudie in input wordernPicPeDifference between top and base in a bimodal signal, or between max and min in an unincedal signalPicPeWale of most probable higher state in a bimodal signal, or between max and min in an unincedal signalPicPeValue of most probable higher state in a bimodal signal, or between max and min in an unincedal signalPicPeValue of most probable higher state in a bimodal wavefornMeanAverage of data valuesConsonAverage of data valuesConsonSandard deviation of all data valuesPicPeOvershoot before a failing edge;(fasc-min)/AmplitudeConsonSondard sandard valuesPicPeOvershoot before a rating edge;(fasc-min)/AmplitudeRiPeOvershoot before a rating edge;(fasc-min)/AmplitudeRiPeNeirod for every cycle in worderom at the 50% level, and positive slopeRiPeNeirod for every cycle in worderom at the 50% level, and positive slopeRiPeNeirod for every cycle in worderom at the 50% level, and positive slopeRiPeNeirod for every cycle in worderom at the 50% level, and positive slopeRiPeNeirod for fring edge for the fast failing edge or then fast failing edge or the fast failin	Source	CH1, CH2, Math, Ref, History		
Heatsurement Powers voise in liquit value in input value/orm Min Lowest value in input value/orm Min Difference between maximum and minimum data values Ampl Difference between maximum and minimum data values Ampl Difference between top and base in a bimodal value/orm Top Value of most probable higher state in a bimodal value/orm Base Value of most probable higher state in a bimodal value/orm Mean Average of data values Cmean Average of data values Standard deviation of all data values in the first cycle Standard deviation of all data values in the first cycle CMM Root mean square of all data values in the first cycle FVV Overshoot after a falling edge(chase-top)/Amplitude ROV Overshoot before a rising edge(max-top)/Amplitude ROV Overshoot before a rising edge(max-top)/Amplitude ROV Overshoot before a rising edge(max-top)/Amplitude ROV Overshoot after a lating edge (tase value) ROV Overshoot after a lating edge (tase value) ROV Overshoot after a lating edge(tase top)/Amplitude ROV Overshoot after a rising edge(rase top)/Amplitude		Display 5 measurements at the same time		
Vertical (Voltage) Max Highest value in input waveform Nerke Difference between maximum and minimum data values Ampl Difference between maximum and minimum data values Rev (M) Value of most probable lingher state in a bimodal waveform Base Value of most probable lingher state in a bimodal waveform Base Value of most probable lingher state in a bimodal waveform Base Value of most probable lingher state in a bimodal waveform Base Value of most probable lingher state in a bimodal waveform Base Value of most probable lingher state in a bimodal waveform Base Value of most probable lingher state in a bimodal waveform Base Value of most probable lingher state in a bimodal waveform Construct bottom of all data values The first cycle State State value of all data values Construct bottom a rating dage:(base-min)/Amplitude Construct bottom a rating dage:(base-min)/Amplitude PRE Overshout bottom a rating dage:(base-min)/Amplitude PRE Overshout bottom a rating dage:(base-min)/Amplitude PRE Overshout bottom a rating dage:(base-min)/Amplitude PRE Previd of revery cycle in waveform at th	Measurement Range Screen region, Gate region			
Min Lowest value in input waveform Pick Difference between top and hase in a bimodel signal, or between max and min in a unimodel signal Top Value of most probable higher state in a bimodel signal, or between max and min in a unimodel signal Top Value of most probable higher state in a bimodel signal, or between max and min in a unimodel signal Top Value of most probable higher state in a bimodel signal, or between max and min in a unimodel signal Min Average of all data values Casta Standard deviation of all data values in the first cycle Casta Standard deviation of all data values in the first cycle Row mean square of all data values in the first cycle Standard deviation of all data values in the first cycle RoW Overshoot date a falling edge;(fusa-min)/Anplitude ROW Overshoot date a sing edge(fusa-min)/Anplitude ROW Overshoot date a sing edge(fusa-min)/Anplitude Level3X Hord sone for sing edge form 10:90% Nota Freque Freque on for inder cycle in waveform at the 50% level and positive slope Value Andre of failing edge; form 10:90% Standard deviation edge form 10:90% Nota Inform the first sing edges of thenstot failing edge or then first failing edge or then	Measurement Paran	neters (37 Typ	es)	
Pic?k Ofference between top and base in a binned signal, or between max and min in an unimodal signal, and between max and min in an unimodal signal, and between max and min in an unimodal signal, and between max and min in an unimodal signal, and between max and min in an unimodal signal, and between max and min in an unimodal signal, and between max and min in an unimodal signal, and between max and min in an unimodal signal, and between max and min in an unimodal signal, and between max and min in an unimodal signal, and between max and min in an unimodal signal, and between max and min in an unimodal signal, and between max and min in an unimodal signal, and between max and min in an unimodal signal, and between max and min in an unimodal signal, and between max and min in anunin an unimax and max and max and max and min in the unimodal sig	Vertical (Voltage)	Max	Highest value in input waveform	
Anj Ofference between top and base in a bimodal signal, or between max and min in an unimodal signal Fig Value of most probable lively state in a bimodal waveform Base Value of most probable lively state in a bimodal waveform Mand Average of data values Crean Average of data values in the first cycle Stade Stader deviation of all data values Crean Root mean square of all data values Root Vershot before a ralling edge;(tass-min)/Amplitude Root Newstop state state all bas values Root Newstop state state all bas values Hale Newstop state state state stabis objeophanoit data sequet		Min	Lowest value in input waveform	
Fig. Value of most probable higher state in a bimodal waveform Fig. Value of most probable higher state in a bimodal waveform Mean Average of data values Carl Average of data values Carl Standard deviation of all data values Carl Overshot after a falling edge;(max-top)/Amplitude Fig. Overshot after a rising edge;(max-top)/Amplitude RPRE Overshot after a rising edge;(max-top)/Amplitude RPRE Vershot after a rising edge; form stop is belowel, and positive slope Inter Numeasured at 50% level and positive slope Value Mide measured at 50% level and positive slope Value Numeasured at 50% level and positive slope Value Numeasured at 50% level and positive slope		Pk-Pk	Difference between maximum and minimum data values	
Base Value of most probable lower state in a bimodal waveform Mano Average of al data values Cinean Average of al data values Stade Stadard deviation of all data values Stade Stadard deviation of all data values Cinean Roader deviation of all data values Views Noreshot before a fining dege(max-top)/mplitude Roader Viewshot before a fining dege(max-top)/Mplitude Roader Preventor before all ning dege(max-top)/Mplitude Roader Preventor before all ning dege (max-top)/Mplitude News Preventor before all ning dege (max-top)/wplitude News Preventor before all ning dege (max-top)/wplitude News Noreson of sing dege (max-top)/wplitude News Noreson of sing dege (max-top)/wplitude Noreson the first sing dege of tha		Ampl		
Name Average of ald ada values Name Average of data values in the first cycle Standar deviation of all data values Standard deviation of all data values Name Standard deviation of all data values in the first cycle VIMS Root mean square of all data values in the first cycle FOW Overshoot after a falling edge;(tase-min)/Amplitude FOW Overshoot after a falling edge;(tase-min)/Amplitude FOW Overshoot before a falling edge;(tase-min)/Amplitude ROW Overshoot before a falling edge;(tase-min)/Amplitude New FoW New FoW FoW FoW FoW FoW FoW New FoW New FoW				
Ream Average of data values in the first cycle Refer Standral deviation of all data values Stadval Standral deviation of all data values VEX Root mean square of all data values in the first cycle VEX Root mean square of all data values in the first cycle FOX Root mean square of all data values in the first cycle FOX Overshoot after a falling edge(max-top)/Amplitude RPRE Overshoot after a sing edge(max-top)/Amplitude RPRE Overshoot after a sing edge(max-top)/Amplitude RPRE Overshoot after a sing edge(max-top)/Amplitude RPRE Revershoot before a ning edge(max-top)/Amplitude RPRE Revershoot before a ning edge(max-top)/Amplitude RPRE Revershoot before a ning edge(max-top)/Amplitude RPRE Revershoot before and thing edge(max-top)/Amplitude RPRE Revershoot before and thing edge(max-top)/Amplitude RPRE Revershoot before and thing edge form applice RPRE Revershoot before and thing edge form applice RPRE Revershoot before and thing edge form applice RPRE Revershoot before and thing edge of channel A tot the first falling edge of channel A, tot the			·	
Stave Standar deviation of all data values Field Standar deviation of all data values in the first cycle Standar deviation of all data values in the first cycle Root mean square of all data values in the first cycle Field Root mean square of all data values in the first cycle Field Root mean square of all data values in the first cycle Field Root mean square of all data values in the first cycle Field Overshoot after a filing edge;(face-min)/Amplitude Root Overshoot after a filing edge;(face-min)/Amplitude Root New foot all the rising edge;(face-min)/Amplitude Root Pershoot before a nising edge;(face-min)/Amplitude Root New foot every cycle in waveform at the 50% level, and positive slope Field Neuton of rising edge from 50% level, and positive slope Field Neuton of rising edge from 50% Root Neuton of rising edge of thanel A tot the first failing edge of chanel A tot the first faili			-	
Edd Standard deviation of all data values in the first cycle VRMS Root mean square of all data values FOR Root mean square of all data values in the first cycle FOR Overshoot before a failing edge;(base-min)/Amplitude ROV Overshoot before a frising edge;(max-top)/Amplitude ROV Overshoot before a frising edge;(base-min)/Amplitude Verelox 1 the voltage value of the trigger point Verelox 1 Torque cycle in waveform at the 50% level, and positive slope FOR Vidth measured at 50% level and positive slope FOR Vidth measured at 50% level and positive slope FOR Vidth measured at 50% level and positive slope FOR Vidth measured at 50% level and positive slope FOR Vidto failing edge from 0-90% FOR Roit of positive width to period FOR Roit of positive width to period FOR Tore from the first frising edge of channel A, tothe first failing edge of channel B			-	
VRMS Rot mean square of all data values Cms Rot mean square of all data values in the first cycle PCV Overshoot after a failing edge;(base-min)/Amplitude FRV Overshoot after a rising edge;(max-top)/Amplitude RPRE Overshoot before a rising edge;(base-min)/Amplitude Leval9X Period Networds the trigger point RPRE Overshoot before a rising edge;(base-min)/Amplitude Period Vershoot before a rising edge;(base-min)/Amplitude Period Networds the trigger point Networds Period Networds the trigger point Period Networds Period Networds the trigger point Period Networds the trigger point Networds Networds of the every cycle in waveform at the 50% level and positive slope Period Networds the every cycle in waveform at the 50% level and positive slope Not Nation of rising edge from 10-09% Networds the first rising edge of the last rising edge of the period Period Networds the period Point Nation of rising edge of the period Networds the rising edge of the period Networds the period Point Net fore mot the first rising edge of thannel A to the first failing edge				
Rms Root mean square of all data values in the first cycle FV Overshoot after a falling edge;(max-top)/Amplitude FVE Overshoot after a rising edge;(max-top)/Amplitude RRE Overshoot after a rising edge;(max-top)/Amplitude RPRE Overshoot after a rising edge;(max-top)/Amplitude RPRE Period Period erising edge;(max-top)/Amplitude Northoot after a rising edge;(max-top)/Amplitude Period Period Precion Period for every cycle in waveform at the 50% level, and positive slope Period Vidt measured at 50% level and negative slope Vidt measured at 50% level and positive slope Vidt measured at 50% level and positive slope Vidt measured at 50% level and negative slope Vidt measured at 50% level and negative slope Vidt measured at 50% level and negative slope Vidt measured at 50% level and negative slope Vidt measured at 50% level and negative slope Vidt Period Vidt measured at 50% level and negative slope Vidt measured at 50% level and negative slope Vidt Period Vidt measured at 50% level and negative slope Vidt measured at 50% level and negative slope Vidt Period Vidt measured at 50% level and negative slope Vidt negative slope Vidt Period Vid				
F0V Overshoot after a failing edge;(base-min)/Amplitude FNEE Overshoot before a failing edge;(max-top)/Amplitude R0V Overshoot before a rising edge;(max-top)/Amplitude R0E Overshoot before a rising edge;(base-min)/Amplitude FNEE Period Period a rising edge;(base-min)/Amplitude Frequency Prove overshoot before a rising edge;(base-min)/Amplitude Frequency Prove overshoot before a rising edge;(base-min)/Amplitude Frequency Prove overshoot before a rising edge;(base-min)/Amplitude Frequency Proventy cycle in waveform at the 50% level, and positive slope Frequency Provency cycle in waveform at the 50% level, and positive slope Frequency Width measured at 50% level and negative slope Frequency Width measured at 50% level and negative slope Frequency Overshoot of failing edge (rom 10-90% Frequency Riso of nogative width to period Polute Riso of nogative width to period Polute Riso of nogative width to period Polute Riso of nogative width to period Frequency Riso on the first failing edge of channel A, to the first failing edge of channel A is the first failing edge of channel A is the first fail				
FRE Overshoot before a failing edge;(max-top)/Amplitude ROV Overshoot after a rising edge;(max-top)/Amplitude RVRE Overshoot after a rising edge;(base-min)/Amplitude Level@X the voltage value of the trigger point Horizontal (Time) Period Period for every cycle in waveform at the 50% level, and positive slope +Wid Width measured at 50% level and negative slope				
ROV Overshoot after a rising edge; (max-top)/Amplitude RPRE Overshoot before a rising edge; (base-min)/Amplitude Level@X the voltage value of the trigger point Horizontal (Time) Period Period for every cycle in waveform at the 50% level, and positive slope FVMI Width measured at 50% level and positive slope Period HWI Width measured at 50% level and negative slope Period Rise Time Duration of rising edge from 10-90% Period Rise Time Duration of rising edge from 90-10% Period Baid Time from the first rising edge ton 90-10% Period PubL Ratio of positive width to period PubL PubL Ratio of positive width to period PubL PubL Ratio of neigger of each transition at a specific level and slope, include:: Current, Max, Min, Mean, Std-dev Delay Time from the first rising edge of channel A, to the first falling edge of channel A, to the first rising edge of channel A is the first rising edge of channel B FRF Time from the first rising edge of channel A, to the first falling edge of channel B FRF Time from the first rising edge of channel A, to the first falling edge of channel B FRF				
LevelQXHevolage value of the trigger pointHorizontal (TIMP)PeriodPeriod or every cycle in waveform at the 50% level, and positive slopeFreqFequency for every cycle in waveform at the 50% level, and positive slope+WiduWidth measured at 50% level and negative slope+WiduWidth measured at 50% level and negative slopeFileDuration of rising edge from 10-90%Raise TimeDuration of falling edge from 90-10%BwiduTime from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossingPoluceRais of negative width to periodDelayTime from the first rising edges of the toos falling edge of channel 8, too falling edges of the toos crossingFRRCalculate the plaase difference between two edgesFRRTime from the first rising edges of than 4, to the first falling edge of channel 8FRRTime from the first rising edges of channel A, to the first falling edge of channel 8FRRTime from the first rising edge of channel A, to the first falling edge of channel 8FRRTime from the first rising edge of channel A, to the first falling edge of channel 8FRRTime from the first rising edge of channel A, to the first falling edge of channel 8FRRTime from the first rising edge of channel A, to the first falling edge of channel 8FRRTime from the first rising edge of channel A, to the first falling edge of channel 8FRRTime from the first rising edge of channel A, to the first falling edge of channel 8FRRTime from the first rising edge of channel A, to the first fallin				
Horizontal (Time) Period Period for every cycle in waveform at the 50% level , and positive slope Freq Frequency for every cycle in waveform at the 50% level , and positive slope +Wid Width measured at 50% level and positive slope -Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Duration of rising edge from 10-90% Fall Time Duration of filing edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing -Dut Ratio of negative width to period Delay Time from the trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev Delay Time from the first rising edge of channel A, to the first falling edge of channel B FFR Time from the first rising edge of channel A, to the first falling edge of channel B FFR Time from the first falling edge of channel A, to the first falling edge of channel B FFR Time from the first falling edge of channel A, to the first falling edge of channel B FFR Time from the first falling edge of channel A, to the first fall		RPRE	Overshoot before a rising edge;(base-min)/Amplitude	
Freq Frequency for every cycle in waveform at the 50% level, and positive slope +Wid Width measured at 50% level and positive slope +Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of negative width to period -Dut Ratio of negative width to period Delay Time from the trigger to the first transition at the 50% crossing Time@Level Time from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev Delay Phase Calculate the phase difference between two edges FRR Time from the first rising edge of channel A, to the first falling edge of channel B FFF Time from the first falling edge of channel A, to the first falling edge of channel B FFR Time from the first falling edge of channel A, to the first falling edge of channel B FFR Time from the first falling		Level@X	the voltage value of the trigger point	
+WidWidth measured at 50% level and positive slopeWidWidth measured at 50% level and negative slopeRise TimeDuration of rising edge from 10-90%Fall TimeDuration of falling edge from 90-10%BwidTime from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing+DutRatio of positive width to period-DutRatio of negative width to periodDelayTime from the trigger to the first transition at the 50% crossingTime@LevelTime from thrigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-devDelayFRRCalculate the phase difference between two edgesFRRTime from the first rising edge of channel A, to the first falling edge of channel BFFFTime from the first rising edge of channel A, to the first falling edge of channel BFFRTime from the first rising edge of channel A, to the first fining edge of channel BFFFTime from the first rising edge of channel A, to the first fining edge of channel BFFFTime from the first rising edge of channel A, to the first fining edge of channel BFFFTime from the first rising edge of channel A, to the first fining edge of channel BLFFTime from the first rising edge of channel A, to the first fining edge of channel BLFFTime from the first rising edge of channel A, to the last rising edge of channel BLFFTime from the first rising edge of channel A, to the last rising edge of channel BLFFTime from the first rising edge of channel A, to the last rising edge of channel B<	Horizontal (Time)	Period	Period for every cycle in waveform at the 50% level ,and positive slope	
WideWide measured at 50% level and negative slopeRise TimeDuation of rising edge from 10-90%Fall TimeDuation of falling edge from 90-10%BwideTime from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossingPuteRatio of positive width to periodDutationTime from the trigger to the first transition at the 50% crossingPuteTime from the trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-devPlaseCalculate the phase difference between two edgesRFRTime from the first rising edge of channel A, to the first falling edge of channel BFIFTime from the first falling edge of channel A, to the first falling edge of channel BRFRTime from the first rising edge of channel A, to the first falling edge of channel BRFRTime from the first rising edge of channel A, to the last rising edge of channel BRFRTime from the first rising edge of channel A, to the last rising edge of channel BRFRTime from the first rising edge of channel A, to the last rising edge of channel BRFRTime from the first rising edge of channel A, to the last rising edge of channel BRFRTime from the first rising edge of channel A, to the last rising edge of channel BRFRTime from the first rising edge of channel A, to the last rising edge of channel BRFRTime from the first rising edge of channel A, to the last rising edge of channel BRFRTime from the first rising edge of channel A, to the last rising edge of channel BRFRTime from the f		Freq	Frequency for every cycle in waveform at the 50% level ,and positive slope	
Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period -Dut Ratio of negative width to period Delay Time from the trigger to the first transition at the 50% crossing Time@Level Time from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev Delay Phase Calculate the phase difference between two edges FRR Time from the first rising edge of channel A, to the first falling edge of channel B FRF Time from the first rising edge of channel A, to the first falling edge of channel B FFF Time from the first rising edge of channel A, to the first falling edge of channel B FFF Time from the first falling edge of channel A, to the last rising edge of channel B LRR Time from the first rising edge of channel A, to the last rising edge of channel B LRF Time from the first rising edge of channel A, to the last rising edge of channel B LRF Time from the first rising edge of channel A, to the last rising edge of channel B LRF Time from the fi		+Wid	Width measured at 50% level and positive slope	
Fail Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period Delay Time from the trigger to the first transition at the 50% crossing Time@Level Time from the trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev Delay Phase Calculate the phase difference between two edges FRR Time from the first rising edge of channel A, to the first falling edge of channel B FFR Time from the first falling edge of channel A, to the first falling edge of channel B FFR Time from the first rising edge of channel A, to the first falling edge of channel B FFF Time from the first rising edge of channel A, to the first falling edge of channel B FFF Time from the first falling edge of channel A, to the first falling edge of channel B LIR Time from the first falling edge of channel A, to the last falling edge of channel B LIF Time from the first falling edge of channel A, to the last falling edge of channel B LIF Time from the first falling edge of channel A, to the last falling edge of channel B LIF Time from the first falling edge of channel A, to th		-Wid	Width measured at 50% level and negative slope	
BwidTime from the first rising edge to the last falling edge ,or the first falling edge to the last rising edge at the 50% crossing +DutAtio of positive width to period-DutRatio of negative width to periodDelayTime from the trigger to the first transition at the 50% crossingTime@LevelTime from the trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-devDelayPhaseCalculate the phase difference between two edgesFRRTime between the first rising edge of thannel A, to the first falling edge of channel BFFRTime from the first rising edge of channel A, to the first rising edge of channel BFFRTime from the first falling edge of channel A, to the first falling edge of channel BFFRTime from the first rising edge of channel A, to the first falling edge of channel BIRRTime from the first rising edge of channel A, to the last rising edge of channel BIRRTime from the first rising edge of channel A, to the last rising edge of channel BIRRTime from the first rising edge of channel A, to the last rising edge of channel BIRFTime from the first rising edge of channel A, to the last rising edge of channel BIRFTime from the first rising edge of channel A, to the last rising edge of channel BIRFTime from the first rising edge of channel A, to the last rising edge of channel BIRFTime from the first rising edge of channel A, to the last rising edge of channel BIRFTime from the first rising edge of channel A, to the last rising edge of channel BIRFTime from the first rising edge of channe		Rise Time	Duration of rising edge from 10-90%	
+Dut Ratio of positive width to period -Dut Ratio of negative width to period Delay Time from the trigger to the first transition at the 50% crossing Time@Level Time from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev Delay Phase Calculate the phase difference between two edges FRR Time from the first rising edges of the two channels FRF Time from the first falling edge of channel A, to the first falling edge of channel B FFF Time from the first rising edge of channel A, to the last falling edge of channel B LRR Time from the first rising edge of channel A, to the last falling edge of channel B LRF Time from the first rising edge of channel A, to the last falling edge of channel B LRF Time from the first rising edge of channel A, to the last falling edge of channel B Cursors Manual : Time X1, X2, (X1-X2), (1/AT) Voltage Y1, Y2, (Y1-Y2) Track: Time X3, X2, (X1-X2)		Fall Time	Duration of falling edge from 90-10%	
PutRatio of negative width to periodPelayFime from the trigger to the first transition at the 50% crossingTime@LevelTime from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-devPelayPhaseCalculate the phase difference between two edgesFRRTime from the first rising edges of the two channelsFRFTime from the first rising edge of channel A, to the first falling edge of channel BFFRTime from the first falling edge of channel A, to the first falling edge of channel BFFRTime from the first rising edge of channel A, to the first falling edge of channel BFFFTime from the first rising edge of channel A, to the last rising edge of channel BLRRTime from the first rising edge of channel A, to the last rising edge of channel BLFFTime from the first rising edge of channel A, to the last rising edge of channel BLFFTime from the first rising edge of channel A, to the last rising edge of channel BLFFTime from the first rising edge of channel A, to the last rising edge of channel BCurrsorsManual : Time Y, X2, (X1-X2), (1/AT) Voltage Y1, Y2, V(1-Y2) Track: Time X , X(1-X2), V(1-Y2) Track: X2, X(1-X2)StatisticsCurrent, Mean, Std-Dev, Count		Bwid	Time from the first rising edge to the last falling edge ,or the first falling edge to the last rising edge at the 50% crossing	
Delay Time from the trigger to the first transition at the 50% crossing Time@Level Time from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev Delay Phase Calculate the phase difference between two edges FRR Time between the first rising edges of the two channels FRF Time from the first rising edge of channel A , to the first rising edge of channel B FFR Time from the first falling edge of channel A, to the first falling edge of channel B FFR Time from the first rising edge of channel A, to the first falling edge of channel B FFR Time from the first rising edge of channel A, to the last rising edge of channel B FFR Time from the first rising edge of channel A, to the last rising edge of channel B LRR Time from the first rising edge of channel A, to the last rising edge of channel B LFF Time from the first falling edge of channel A, to the last rising edge of channel B Currsors Manual: Time Trom the first falling edge of channel A, to the last rising edge of channel B Currsors Manual: Time Trom the first falling edge of channel A, to the last rising edge of channel B Statistics Current, Max, Std-Dev, Count		+Dut	Ratio of positive width to period	
Time@LevelTime from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-devDelayPhaseCalculate the phase difference between two edgesFRRTime between the first rising edges of the two channelsFRFTime from the first rising edge of channel A, to the first falling edge of channel BFFFTime from the first falling edge of channel A, to the first falling edge of channel BLRRTime from the first rising edge of channel A, to the last rising edge of channel BLRFTime from the first rising edge of channel A, to the last rising edge of channel BLFFTime from the first rising edge of channel A, to the last rising edge of channel BCursorsManual : Time from the first falling edge of channel A, to the last rising edge of channel BCursorsManual : Time from the first falling edge of channel A, to the last rising edge of channel BStatisticsCurrent, Max, Std-Dev, Count		-Dut	Ratio of negative width to period	
DelayPhaseCalculate the phase difference between two edgesFRRTime between the first rising edges of the two channelsFRFTime from the first rising edge of channel A, to the first falling edge of channel BFFRTime from the first falling edge of channel A, to the first rising edge of channel BFFFTime from the first falling edge of channel A, to the first falling edge of channel BLRRTime from the first rising edge of channel A, to the last rising edge of channel BLFFTime from the first rising edge of channel A, to the last rising edge of channel BLFFTime from the first rising edge of channel A, to the last rising edge of channel BCursorsManual : Time X1, X2, (X1-X2), (1/AT) Voltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2), CountStatisticsCurrent, Mean, Std-Dev, Count		Delay	Time from the trigger to the first transition at the 50% crossing	
FRR Time between the first rising edges of the two channels FRF Time from the first rising edge of channel A, to the first falling edge of channel B FFR Time from the first falling edge of channel A, to the first rising edge of channel B FFF Time from the first falling edge of channel A, to the first falling edge of channel B LRR Time from the first rising edge of channel A, to the last rising edge of channel B LFF Time from the first rising edge of channel A, to the last rising edge of channel B Cursors Manual : Time X1, X2, (X1-X2), (1/ΔT) Voltage Y1, Y2, V1-Y2) Time X1, X2, (X1-X2), (1/ΔT) Statistics Current, Mex, Std-Dev, Count		Time@Level	Time from trigger of each transition at a specific level and slope, include: Current, Max, Min, Mean, Std-dev	
FRF Time from the first rising edge of channel A ,to the first falling edge of channel B FFR Time from the first falling edge of channel A ,to the first rising edge of channel B FFF Time from the first falling edge of channel A ,to the first falling edge of channel B LRR Time from the first rising edge of channel A ,to the last rising edge of channel B LRF Time from the first rising edge of channel A ,to the last falling edge of channel B LFF Time from the first rising edge of channel A ,to the last falling edge of channel B Cursors Manual : Time X1, X2, (X1-X2), (1/AT) Yoltage Y1, Y2, (Y1-Y2) Time X1, X2, (X1-X2), (1/AT) Statistics Current, Meax, Std-Dev, Count	Delay	Phase	Calculate the phase difference between two edges	
FFR Time from the first falling edge of channel A , to the first rising edge of channel B FFF Time from the first falling edge of channel A , to the first falling edge of channel B LRR Time from the first rising edge of channel A , to the last rising edge of channel B LRF Time from the first rising edge of channel A , to the last rising edge of channel B LFF Time from the first falling edge of channel A , to the last rising edge of channel B Cursors Manual : Time XI, X2, (X1-X2), (1/AT) Voltage Y1, Y2, (Y1-Y2) Track: Time XI, X2, (X1-X2), (1/AT) Track: Time XI, X2, (X1-X2), Count Current, Max, Std-Dev, Count		FRR	Time between the first rising edges of the two channels	
FFF Time from the first falling edge of channel A ,to the first falling edge of channel B LRR Time from the first rising edge of channel A ,to the last rising edge of channel B LRF Time from the first rising edge of channel A ,to the last falling edge of channel B LFF Time from the first falling edge of channel A ,to the last rising edge of channel B Cursors Manual : Time X1, X2, (X1-X2), (1/ΔT) Yoltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2), (1/ΔT) Statistics Current, Mear, Std-Dev, Count		FRF	Time from the first rising edge of channel A ,to the first falling edge of channel B	
LRR Time from the first rising edge of channel A, to the last rising edge of channel B LRF Time from the first rising edge of channel A, to the last falling edge of channel B LFF Time from the first falling edge of channel A, to the last rising edge of channel B Cursors Manual : Time X1, X2, (X1-X2), (1/ΔT) Yoltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2), (1/ΔT) Statistics Current, Mear, Std-Dev, Count		FFR	Time from the first falling edge of channel A ,to the first rising edge of channel B	
LRF Time from the first rising edge of channel A ,to the last falling edge of channel B LFF Time from the first falling edge of channel A ,to the last rising edge of channel B Cursors Manual : Time X1, X2, (X1-X2), (1/ΔT) Yoltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2) Statistics Current, Mean, Std-Dev, Count				
LFF Time from the first falling edge of channel A ,to the last rising edge of channel B Cursors Manual : Time X1, X2, (X1-X2), (1/ΔT) Voltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2) Statistics Current, Mean, Std-Dev, Count				
Cursors Manual : Time X1, X2, (X1-X2), (1/ΔT) Voltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2) Statistics Current, Mean, Min, Max, Std-Dev, Count				
Statistics Current, Mean, Min, Max, Std-Dev, Count	Cursors	Manual : Time X1, X2, (X1-X2), (1/ΔT) Voltage Y1, Y2, (Y1-Y2)		
	Statistics			
	Counter			

Math Function	
Operation	+, -, *, /, FFT, d/dt,∫dt,√
FFT window	Rectangular, Blackman, Hanning, Hamming
FFT display	Full Screen, Split
Decoding number	2
SDS1000X+)	n Generator (Standard for
Channel	1
Max. Output Frequency	25 MHz
Sampling Rate	125 MSa/s
Frequency Resolution	1 μHz
Frequency Accuracy	±50 ppm
Vertical Resolution	14 bits
Amplitude Range	-1.5 ~ +1.5 V (50 Ω)
	-3 ~ +3 V (High-Z)
Waveform Type	Sine, Square, Ramp, Pulse, DC, Noise, Cardiac, Gaus Pulse, Exp Rise, Exp Fall, Arb
Output impedance	50 Ω±2%
Protection	Short-Circuit Protection
Sine	
Frequency	1 μHz ~ 25 MHz
Offset Accuracy (100 KHz)	±(0.3 dB*Offset Setting Value +1 mVpp)
Amplitude flatness (100 kHz, 5Vpp)	±0.3 dB
SFDR	DC ~ 1 MHz -60 dBc
	1 MHz ~ 5 MHz -55 dBc
	5 MHz ~ 25 MHz -50 dBc
HD	DC-5 MHz -50 dBc
HD	DC-5 MHz -50 dBc 5 MHz - 25 MHz -45 dBc
Square/Pulse	5 MHz - 25 MHz -45 dBc
Square/Pulse Frequency	5 MHz - 25 MHz -45 dBc 1 μHz ~ 10 MHz
Square/Pulse Frequency Duty Cycle	5 MHz - 25 MHz -45 dBc 1 μHz ~ 10 MHz 20% ~ 80%
Square/Pulse Frequency Duty Cycle Rise/Fall time Overshoot (1kHz,	5 MHz - 25 MHz -45 dBc 1 μHz ~ 10 MHz
Square/Pulse Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical)	5 MHz - 25 MHz -45 dBc 1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3%
Square/Pulse Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width	5 MHz - 25 MHz -45 dBc 1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3% > 50 ns
Square/Pulse Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter	5 MHz - 25 MHz -45 dBc 1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3%
Square/Pulse Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter Ramp	5 MHz - 25 MHz -45 dBc 1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3% > 50 ns < 500 ps + 10 ppm
Square/Pulse Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter	5 MHz - 25 MHz -45 dBc 1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz ~ 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100%
Square/Pulse Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter Ramp Frequency Linearity(Typical)	5 MHz - 25 MHz -45 dBc 1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz ~ 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry)
Square/Pulse Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter Ramp Frequency Linearity(Typical) Symmetry	5 MHz - 25 MHz -45 dBc 1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz ~ 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100%
Square/Pulse Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter Ramp Frequency Linearity(Typical)	5 MHz - 25 MHz -45 dBc 1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz ~ 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry) 0% ~ 100% (Adjustable)
Square/Pulse Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter Ramp Frequency Linearity(Typical) Symmetry	5 MHz - 25 MHz -45 dBc 1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz ~ 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry)
Square/Pulse Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter Ramp Frequency Linearity(Typical) Symmetry DC	5 MHz - 25 MHz -45 dBc 1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz ~ 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry) 0% ~ 100% (Adjustable) ±1.5 V (50 Ω)
Square/Pulse Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter Ramp Frequency Linearity(Typical) Symmetry DC Offset range	5 MHz - 25 MHz -45 dBc 1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz ~ 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry) 0% ~ 100% (Adjustable) ±1.5 V (50 Ω) ±3 V (High-Z)
Square/Pulse Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter Ramp Frequency Linearity(Typical) Symmetry DC Offset range Accuracy	5 MHz - 25 MHz -45 dBc 1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz ~ 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry) 0% ~ 100% (Adjustable) ±1.5 V (50 Ω) ±3 V (High-Z)
Square/Pulse Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1Vpp, Typical) Pulse Width Jitter Ramp Frequency Linearity(Typical) Symmetry Symmetry DC Offset range Accuracy Bandwidth	5 MHz - 25 MHz -45 dBc 1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz ~ 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry) 0% ~ 100% (Adjustable) #1.5 V (50 Ω) ±3 V (High-Z) ±(offset *1%+3 mV)
Square/Pulse Frequency Fuely Cycle Rise/Fall time Vovershoot (1kHz, 1Vpp, Typical) Pulse Width Utter Inter Ramp Frequency Linearity(Typical) Symmetry DC Offset range Accuracy Bandwidth Arbitrary Wave	5 MHz - 25 MHz -45 dBc 1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz ~ 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry) 0% ~ 100% (Adjustable) #1.5 V (50 Ω) ±3 V (High-Z) ±(Ioffset]*1%+3 mV) >25 MHz (-3 dB)
Square/Pulse Frequency Duty Cycle Cise/Fall time Cise/Fall time Cise/Fall time Cise/Fall time Cise/Fall time Cise/Fall time Cise/Fall Cise/Fall Cise/Fall Cise/Cise/Cise/Cise/Cise/Cise/Cise/Cise/	5 MHz - 25 MHz -45 dBc 1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz ~ 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry) 0% ~ 100% (Adjustable) 4 ±1.5 V (50 Ω) ±3 V (High-Z) ±(offset *1%+3 mV) 2 25 MHz (-3 dB) 1 μHz ~ 5 MHz
Square/Pulse Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, Vypp, Typical) Pulse Width Dutse Width Chearency Frequency Symmetry Doc Symmetry Coffset range Coffset range Accuracy Accuracy Bandwidth Coffset Frequency Frequency Wave Length	5 MHz - 25 MHz -45 dBc 1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz ~ 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry) 0% ~ 100% (Adjustable) 4 ±1.5 V (50 Ω) ±3 V (High-Z) ±(Ioffset *1%+3 mV) 225 MHz (-3 dB) 1 μHz ~ 5 MHz 16 Kpts
Square/Pulse Frequency Duty Cycle Rise/Fall time Overshoot (1kHz, 1/vpp, Typical) Pulse Width Jitter Ramp Frequency Cinearity(Typical) Symmetry DC Offset range Accuracy Noise Bandwidth Arbitrary Wave Frequency	5 MHz - 25 MHz -45 dBc 1 μHz ~ 10 MHz 20% ~ 80% < 24 ns (10% ~ 90%) < 3% > 50 ns < 500 ps + 10 ppm 1 μHz ~ 300 kHz < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry) 0% ~ 100% (Adjustable) 4 ±1.5 V (50 Ω) ±3 V (High-Z) ±(offset *1%+3 mV) 2 25 MHz (-3 dB) 1 μHz ~ 5 MHz

Digital Channels (Optional for SDS1000X+)			
No. of Channels	16		
Max. Sampling Rate	500 MSa/s		
Memory Depth	14 Mpts/CH		
Min. Detectable Pulse Width	4 ns		
Level Group	D0~D7, D8~D15		
Level Range	-3 V~3 V		
Logic Type	TTL, CMOS, LVCMOS 3.3, LVCMOS 2.5, custom		
Skew	D0~D15: ±1 sampling interval Digital to Analog: ± (1 sampling interval +1 ns)		

I/O Standard USB Host, USB Device, LAN, Pass/Fail, Trigger Out Pass/Fail 3.3 V TTL Output **Display (Screen)** Display Type 8 inch TFT-LCD **Display Resolution** 800×480 **Display** Color 24 bit Contrast (Typical) 500:1 Backlight 300 nit 8 x 14 divisions Range **Display (Waveform)** Display Mode Dot, Vector Persist Time Off, 1 Sec, 5 Sec, 10 Sec, 30 Sec, Infinite Color Display Normal, Color Screen Saver $1\ \text{min},\,5\ \text{min},\,10\ \text{min},\,30\ \text{min},\,1\ \text{hour, Off}$ Language Simplified Chinese, Traditional Chinese, English, French, Japanese, Korean, German, Russian, Italian, Portuguese **Environments** Temperature Operating: 10 °C \sim +40 °C Non-operating: -20 $^\circ\text{C}$ +60 $^\circ\text{C}$ Humidity Operating: 85%RH, 40 °C , 24 hours Non-operating: 85%RH, 65 $^\circ\!\mathrm{C}$, 24 hours Height Operating: ≤3000 m Non-operating: ≤15,266 m Electromagnetic 2004/108/EC Compatibility Execution Standard EN 61326-1:2006 EN 61000-3-2:2006 + A2:2009, EN 61000-3-3:2008 Safety 2006/95/EC Execution Standard EN 61010-1:2010/EN 61010-2-030:2010 **Mechanical** Dimensions Length 340 mm Width 123 mm Height 184 mm Weight N.W: 3.26 Kg; G.W: 4.25 Kg **Power Supply** Input Voltage 100 ~ 240 VAC, CAT II, Auto selection 50/ 60/ 400 Hz Frequency 50 W Max Power

SDS1000X/SDS1000X+ Probes & Accessories

Туре	Model	Picture	Specifications
Passive Probe	PP470		Bandwidth: 70 MHz, 1 X/10 X, 1 M/10 Mohm, 300 V/600 V
	PP510		Bandwidth: 100 MHz, 1 X/10 X, 1 M/10 Mohm, 300 V/600 V
	PP215		Bandwidth: 200 MHz, 1 X/10 X, 1 M/10 Mohm, 300 V/600 V
Logic Probe	SPL1016		16 Channel Logic Probe
Current Probe	CP4020		Bandwidth: 100 KHz; Maximum continuous current 20 Arms; Peak current 60 A; Switching ratio: 50 mV/A; 5 mV/A; DC measurement accuracy: 50 mV/A (0.4 A-10 ApK) ± 2%; 5 mV/A (1 A-60 ApK)±2%; 9 V battery-powered
	CP4050		Bandwidth: 1 MHz; Maximum continuous current 50 Arms; Peak current 140 A; Switching ratio: 500 mV/A; 50 mV/A; DC measurement measurement accuracy: 500 mV/A (20 mA-14 ApK) ±3%±20 mA; 50 mV/A (200 mA-100 ApK)±4%± 200 mA; 50 mV/A (100 A-140 ApK)±15% max; 9 V battery-powered
	CP4070		Bandwidth: 150 KHz; Maximum continuous current 70 Arms; Peak current 200 A; Switching ratio: 50 mV/A; 5 mV/A; DC measurement accuracy: 50 mV/A (0.4 A-10 ApK)±2%±5 mV/A (1 A-200 ApK)±2%; 9 V battery-powered
	CP4070A		Bandwidth: 300 KHz; Maximum continuous current 70 Arms; Peak current 200 A; Switching ratio: 100 mV/A;10 mV/A; DC measurement accuracy: 100 mV/A (50 mA-10 ApK) ±3%±50 mA; 10 mV/A (500 mA-40 ApK) ±4%±50 mA; 10 mV/A (40 A-200 ApK) ±15% max; 9 V battery-powered
	CP5030		Bandwidth: 50 MHz; Maximum continuous current 30 Arms; Peak current 50 A;Switching ratio: 100 mV/A, 1 V/A; AC/DC measurement accuracy: 1 A (±1%±1 mA); 100 mV/A (±1%±10 mA); Standard DC 12 V/1.2 A power adapter
	СР5030А		Bandwidth: 100 MHz; Maximum continuous current 30 Arms; Peak current 50 A; Switching ratio: 100 mV/A, 1 V/A; AC/DC measurement accuracy: 1 A (±1%±1 mA); 100 mV/A (±1%±10 mA); Standard DC 12 V/1.2 A power adapter
	CP5150		Bandwidth: 12 MHz; Maximum continuous current 150 Arms; Peak current 300 A; Switching ratio: 100 mV/A, 1 V/A; AC/DC measurement accuracy: 100 mV/A (±1%±1 mA); 10 mV/A (±1%±10 mA); Standard DC 12 V/1.2 A power adapter
	CP5500		Bandwidth: 5 MHz; Maximum continuous current 500 Arms; Peak current 750 A; Switching ratio: 100 mV/A, 10 mV/A; AC/DC measurement accuracy: 100 mV/A (±1%±1 mA); 10 mV/A (±1%±10 mA); Standard DC 12 V/1.2 A power adapter
High Voltage Differential Probe	DPB4080		Bandwidth: 50 MHz; Maximum input differential voltage 800 V (DC + Peak AC); Range selection (attenuation ratio):10 X/100 X; Accuracy: ±1%; Standard DC 9 V/1 A power adapter
	DPB5150		Bandwidth: 70 MHz; Maximum input differential voltage 1500 V (DC + Peak AC); Range selection (attenuation ratio): 50 X/500 X; Accuracy: ±2%; Standard 5 V/1 A USB power adapter

Туре	Model	Picture	Specifications
High Voltage Differential Probe	DPB5150A		Bandwidth: 100 MHz; Maximum input differential voltage 1500 V (DC + Peak AC); Range selection (attenuation ratio): 50 X/500 X; Accuracy: ±2%; Standard 5 V/1 A USB power adapter
	DPB5700		Bandwidth: 70 MHz; Maximum input differential voltage 7000 V (DC + Peak AC); Range selection (attenuation ratio): 100 X/1000 X; Accuracy: ±2%; Standard 5 V/1 A USB power adapter
	DPB5700A		Bandwidth: 100 MHz; Maximum input differential voltage 7000 V (DC + Peak AC); Range selection (attenuation ratio): 100 X/1000 X; Accuracy: ±2%; Standard 5 V/1 A USB power adapter
High Voltage Probe	HPB4010		Bandwidth: 40 MHz; Maximum measurement voltage DC: 10 KV; AC (rms) : 7 KV (sine) ; AC (Vpp) : 20 KV (Pulse); attenuation ratio 1:1000; Accuracy: ≤3%
Isolated front end	ISFE		USB 5 V power supply, plug and play, the maximum input voltage 600 Vp-p, floating test. Work with oscilloscopes.
Demo board	STB Test Board		Optional accessories for experimental teaching and product demos
Deskew fixture	DF2001A		Deskew fixture for voltage and current probes

Ordering information

Product Description	Product Name
100 MHz Two Channels	SDS1102X
200 MHz Two Channels	SDS1202X
100 MHz Two Channels, Built-In Waveform Generator (Standard), 16 Digital Channels (Option, *Requires SPL1016 & SDS-1000X-LA)	SDS1102X+
200 MHz Two Channels, Built-In Waveform Generator (Standard), 16 Digital Channels (Option, *Requires SPL1016 & SDS-1000X-LA)	SDS1202X+

Standard Accessories	
USB Cable -1	
Quick Start-1	
Certification-1	
Passive Probe-2	
Power Cord -1	
CD (Included User Manual and EasyScopeX software)-1	
Optional Accessories	
I2C,SPI,UART/RS232,CAN,LIN Decoder	SDS-1000X-DC
16 Channels MSO (Software)	SDS-1000X-LA
16 Digital Channels Logic Probe	SPL1016
Isolated Front End	ISFE
STB Demo Source	STB
High Voltage Probe	HPB4010
Current Probe	CP4020/CP4050/CP4070/ CP4070A/CP5030/CP5030A/ CP5150/CP5500
Differential Probe	DPB4080/DPB5150/DPB5150A/DPB5700/DPB5700A

SDS1000X SDS1000X+ Series Digital Oscilloscope

About SIGLENT

SIGLENT is an international high-tech company, concentrating on R&D, sales, production and services of electronic test & measurement instruments.

SIGLENT first began developing digital oscilloscopes independently in 2002. After more than a decade of continuous development, SIGLENT has extended its product line to include digital oscilloscopes, function/arbitrary waveform generators, digital multimeters, DC power supplies, spectrum analyzers, isolated handheld oscilloscopes and other general purpose test instrumentation. Since its first oscilloscope, the ADS7000 series, was launched in 2005, SIGLENT has become the fastest growing manufacturer of digital oscilloscopes. We firmly believe that today SIGLENT is the best value in electronic test & measurement.

Headquarter:

SIGLENT TECHNOLOGIES CO., LTD. Add: Bldg No.4 & No.5, Antongda Industrial Zone, 3rd Liuxian Road, Bao'an District, Shenzhen, 518101, China. Tel: + 86 755 3661 5186 Fax: + 86 755 3359 1582 Email: sales@siglent.com; Website: www.siglent.com/ens/

USA:

SIGLENT Technologies America, Inc 6557 Cochran Rd Solon, Ohio 44139 Tel: 440-398-5800 Toll Free: 877-515-5551 Fax: 440-399-1211 Email: info@siglent.com Website: www.siglentamerica.com

Europe:

SIGLENT TECHNOLOGIES EUROPE GmbH ADD: Liebigstrasse 2-20, Gebaeude 14, 22113 Hamburg Germany Tel: +49(0)-819-95946 Fax: +49(0)-819-95947 Email: info-eu@siglent.com Website: www.siglenteu.com Follow us on Facebook: SiglentTech

