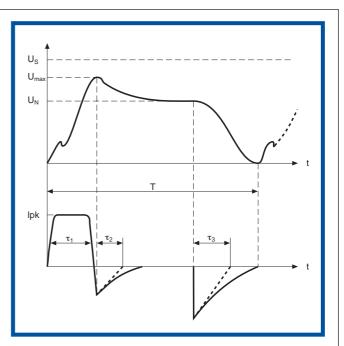


THY-CLP CAPACITORS FOR GTO THYRISTORS

IHY SNUBBER CAPACITORS FOR GATE TURN-OFF THYRISTORS

THY capacitors are characterized by low losses, high peak voltage, high current handling capability and a very low inductance. They are cilindrical, axial terminals. THY D series consists of dry metallized polypropylene capacitors, self-headling type. THY W series consists of all polypropylene film dielectric capacitos, metal foil, impregnated with oil. Standards of reference: IEC 384-1, IEC 68-2, IEC 1071-1.


DEFINITIONS

C _N	Rated capacitance.
U _N	Rated D.C. voltage.
U_{\max}	Periodic peak voltage.
U _S	Surge peak voltage (the dielectric must withstand the peak off-state voltage of the associated G.T.O.: $U_S = U_{GTO}$).
Urms	Rated A.C. voltage.
I _{max}	Maximum current: is the maximum r.m.s. value for continuous operation.
τ	Pulse width.
Т	Duration of the fundamental oscillation, according to which all processes are repeated cyclically.
F	Fundamental frequency F = 1/T.
R_{s}	Series resistance: is the resistance produced by the current heat losses (I^2 $\rm R_s)$ in the capacitor.
Tanð ₀	Dielectric dissipation factor may be regarded as constant in the frequency range in which it is employed. Typical for polypropylene is 2.10 ⁻⁴ .
Tanð	Dissipation factor is calculate as follows: $tan\delta$ = $tan\delta_0$ + 2.π. C.F.R_s.

dv/dt The dv/dt value is the maximum slope of the voltage waveshape during charging or discharging of the capacitor and is espressed in V/ µs. The consequent peak current can be calculated as follows:

$$lpk = C \cdot \frac{dv}{dt}$$

- Ρ Sum of all the actual power generated in the capacitor.
- Thermal resistance between the hot-spot in the winding and Rth the environment. The following formula is valid: (th - to) / Rth = P.
- θh Hottest point in the capacitor winding.
- Operating ambient temperature. It is the temperature of the າໃດ air (or freon) under steady state conditions measured at approximately 0.1m away from the capacitor case.
- Thermal resistance with freon or FG 72 cooling. Rthf
- Self inductance of the capacitors: is due to internal connec-L tions, terminals, winding characteristics and physical dimensions.

SELECTING THE CORRECT CAPACITORS (OPERATING LIMITS)

1 VOITAGE

The surge peak voltage U_{S} , the rated D.C. voltage U_{N} and the periodic peak voltage U_{\max} must be no higher than the operating values.

2. dv/dt LIMITATION The dv/dt must not exceed the rated value $\frac{dv}{dt} \le \frac{U_{max}}{\tau_1}$

In other words, the peak current must be: lpk $\leq C \cdot \frac{U_{max}}{\tau}$

3. CURRENT LIMITATION

The Irms current must not exceed the maximum current Imax. Irms current can be calculated as follows:

$$I_{\rm rms} = \sqrt{\frac{C^2}{T} \cdot \left(\frac{U_{\rm max}^2}{\tau_1} + \frac{(U_{\rm max} - U_{\rm N})^2}{2 \cdot \tau_2} + \frac{U_{\rm N}^2}{2 \cdot \tau_3}\right)}$$

4. THERMAL CHECK

The power losses are composed of the dielectric losses and the series losses ($R_{\rm S}l^2{}_{\rm rms}$) in the metal electrodes, the connections and the contact zone metallization.

The total power dissipated can be calculated as follows:

$$P = \frac{C}{\pi \cdot T} \cdot \left(U_{max}^{2} + \frac{(U_{max} - U_{N})^{2}}{2} + \frac{U_{N}^{2}}{2} \right) \cdot \tan \delta_{0} + R_{S} I_{rms}^{2}$$

$$\simeq \frac{1}{2} \cdot C \cdot \frac{U^{2}}{T} \tan \delta_{0} + R_{S} I_{rms}^{2}$$

The hot spot temperature can be calculated with the formula: $\vartheta h = Rth \cdot P + \vartheta_0.$

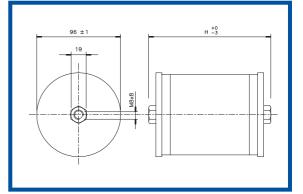
The hottest point in the capacitor winding cannot exceed 85°C.

REMARKS

Thermal check supposes that only the heat generated in the capacitor is trasmitted into the environment via the surface of the case. In the case of over heating (poor connections, proximity of the diode etc.) a premature failure is very probable.

THYWSERES

THY W series consist of all film dielectric capacitors, impregnated with a synthetic oil without environmental or toxicological problems.


The case is ceramic and the shape is cilindrical.

A special arrangement assures very low series resistance and high capability to withstand inrush currents. The capacitors can operate with freon atmosphere.

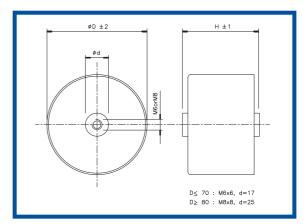
Mechanical fixing consists of threaded holes M8.

GENERAL CHARACTERISTICS

Self inductance	≤ 10 nH
Time constant between terminals (Rt · C)	> 3000 s
Tanδ at 1 kHz	≤ 5 · 10 ⁻⁴
Temperature coefficent of capacitance	– 300 ppm/°C
Climatic category ϑ min 25°C	ϑ max + 85°C
Storage temperature ϑ min 55°C	ϑ max + 85°C

$U_{GT0} = 4500V$ $U_{N} = 3000V$ $U_{rms} = 1250V$ $U_{max} = 3600V$ $U_{S} = 4500V$ Voltage Test = 6000							0 VDC x 10s
MODEL:THY -W 4 X-		0.5 - 450	1 – 450	2 — 450	3 – 450	4 – 450	6 - 450
С _N ±10% (µ F), ±5% (on request	0.5	1	2	3	4	6
I _{max}	(A)	100	100	100	150	150	150
R _S	(mΩ)	0.15	0.15	0.15	0.15	0.15	0.15
dv/dt	(V/µ s)	4000	3000	2000	2000	1500	1000
l peak	(A)	2000	3000	4000	6000	6000	6000
R th	(°C/W)	10	8.5	7	4.5	4	3
R thf	(°C/W)	7.5	6	5	3	3	2
Н	(mm)	93	93	93	143	143	163
Max Tighten Torque	(Nm)	12	12	12	12	12	12

THYDSERES


THY D series consists of dry metallized dielectric capacitors, self healing type, with axial terminals. The capacitor winding is enclosed in a plastic can filled with resin. Both are self-extinguishing.

A special arrangement assures a very low series resistance and high capability to withstand inrush currents.

Mechanical fixing consists of threaded holes M6 or M8.

GENERAL CHARACTERISTICS

Self inductance Time constant between terminals (Rt · C) Tanð at 1 kHz Temperature coefficent of capacitance Climatic category ϑ min. - 40°C Storage temperature ϑ min. - 55°C ≤ 10 nH > 3000 s ≤ 3 · 10⁻⁴ - 250 ppm/°C ϑ max + 85°C ϑ max + 85°C

U _{gto} = 1700V	$U_N = 12$	200V	U _{rms} = 550\	/ U _m	_{nx} = 1350V	U _s =	1700V	Voltage 1	est = 1700	VDC x 10s
MODEL:THY -D 3 X	-	0.5 –170	1 – 170	2 - 170	3 – 170	4 – 170	5 – 170	6 — 170	8 — 170	10 - 170
C _N ±5%	(µ F)	0.5	1	2	3	4	5	6	8	10
I _{max}	(A)	15	20	40	55	70	75	80	65	75
R _S	(m Ω)	3	1.6	1	0.7	0.6	0.5	0.5	0.6	0.6
dv/dt	(V/µ s)	750	750	750	750	750	750	750	500	500
l peak	(A)	400	750	1500	2300	3000	3800	4500	4000	5000
R th	(°C/W)	18	10.7	6	4.2	3.2	2.7	2.2	3.5	2.9
Ø	(mm)	40	50	58	70	80	90	90	90	90
Н	(mm)	49	49	49	49	52	52	52	62	62
Terminals		M6	M6	M6	M6	M8	M8	M8	M8	M8
Max Tighten Torque	e (Nm)	6	6	6	6	10	10	10	10	10

$U_{GTO} = 2050V$ $U_N = 1600V$ $U_{rms} = 650V$ $U_{max} = 1650V$ $U_S = 2050V$ Voltage Test = 2200 VDC x 10s								
MODEL:THY -D 3 X	-	0.5-205	1 – 205	2-205	3 – 205	4 - 205	5 — 205	6 — 205
C _N ±5%	(µ F)	0.5	1	2	3	4	5	6
I _{max}	(A)	15	25	50	65	80	50	65
R _S	(m Ω)	2.4	1.4	0.8	0.7	0.6	0.5	0.7
dv/dt	(V/µ s)	750	750	750	750	750	500	500
l peak	(A)	400	750	1500	2300	3000	2500	3000
R th	(°C/W)	14.2	8.3	4.6	3.2	2.4	4	3.4
Ø	(mm)	40	50	70	80	90	90	90
Н	(mm)	49	49	49	52	52	62	62
Terminals		M6	M6	M6	M8	M8	M8	M8
Max Tighten Torque	e (Nm)	6	6	6	10	10	10	10

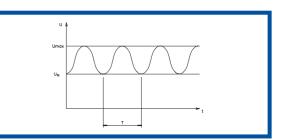
$U_{GTO} = 1400V$	$U_{\rm N}=800V$	U _{rms} = 60	OV U _{max}	= 1100V	$U_{S} = 14$	400V Vo	ltage Test	= 1400 \	/DC x 10s
MODEL:THY -D	3 X -	1–140	2—140	2,5-140	4–140	5–140	6–140	8–140	12-140
C _N ±5%	(µ F)	1	2	2,5	4	5	6	8	12
I _{max}	(A)	15	25	30	50	60	70	80	80
R _S	$(m\Omega)$	1.4	0.9	0.7	0.5	0.3	0.4	0.4	0.4
dv/dt	(V/µ s)	750	750	750	750	500	750	500	500
l peak	(A)	750	1500	1800	3000	2500	4500	4000	6000
R th	(°C/W)	12	9	3	5	4,5	4	3,5	3
Ø	(mm)	40	50	58	70	70	70	80	90
Н	(mm)	49	49	49	49	49	59	59	62
Terminals		M6	M6	M6	M6	M6	M6	M8	M8
Max Tighten To	orque (Nm)	6	6	6	6	6	6	10	10

$U_{GTO} = 2600V$	U _N = 2000V	U _{rms} = 750	IV U _{max} = 2	100V U _s =	2600V Volt	age Test = 270	00 VDC x 10s
MODEL:THY -D	3 X	0.5 - 260	1 – 260	2 – 260	2.5 – 260	3 – 260	4 – 260
C _N ±5%	(µ F)	0.5	1	2	2.5	3	4
I _{max}	(A)	20	40	35	40	50	65
R _S	$(m\Omega)$	2	1.1	1.2	1	0.9	0.7
dv/dt	(V/µ s)	750	750	500	500	500	500
l peak	(A)	400	750	1000	1300	1500	2000
R th	(°C/W)	10.8	6.1	6.5	5.5	4.7	3.7
Ø	(mm)	50	58	70	80	80	90
Н	(mm)	49	49	59	62	62	62
Terminals		M6	M6	M6	M8	M8	M8
Max Tighten Ta	rque (Nm)	6	6	6	10	10	10

CLAMPING CAPACITORS (SECONDARY SNUBBER) FOR GATE TURN-OFF THYRISTORS

CLP capacitors have the same mechanical execution of THY but intended for use with a D.C. voltage with superimposed a ripple voltage.

CLP D SERIES consist of dry metallized polypropylene capacitors, self healing type.


CLP W SERIES consist of mixed dielectric (paper - polypropylene) capacitors, metal foil, impregnated with oil. Standards of reference: IEC 384-1, IEC 68-2, IEC 1071-1.

OPDSERES

CLP D series consists of dry metallizes dielectric capacitors, self healing type, with axial terminals. The capacitors winding is enclosed in a plastic can filled with resin. Both are self-extinguishing. A special arrangement assures a very low series resistance and high capability to withstand inrush currents. Mechanical fixing consists of threaded holes M8.

GENERAL CHARACTERISTICS

Self inductance	≤ 10 nH
Time constant between terminals (Rt · C)	> 3000 s
Tanδat 1 kHz	3 · 10 ⁻⁴
Temperature coefficent of capacitance	– 250 ppm/°C
Climatic category & min 40°C	ϑ max + 85°C
Storage temperature ϑ min 55°C	ϑ max + 85°C

THERMAL CHECK (for definitions and operating limits see also THY explanations)

$$\mathsf{P} = -\frac{\pi \cdot \mathsf{C}}{\mathsf{T}} \cdot \frac{(\mathsf{U}_{\mathsf{max}} - \mathsf{U}_{\mathsf{N}})^2}{4} \cdot \tan \delta_0 + \mathsf{R}_{\mathsf{s}} \, \mathsf{I}^2_{\mathsf{rms}}$$

tan $\delta_0 = (4 + F/kHz) 10^{-4}$ for CLP W tan $\delta_0 = 2 \cdot 10^{-4}$ for CLP D

The hot spot temperature in the capacitor winding cannot exceed 85°C, calculated with following formula: $\vartheta h = Rth \cdot P + \vartheta o$.

$U_{GTO} = 1500V$ $U_{N} = 1000V$ $U_{rms} = 450V$ $U_{max} = 1200V$ $U_{S} = 1500V$ Voltage Test = 1700 VDC x 10s							
MODEL:CLP - D3X -		13 – 150	17 — 150	25 — 150			
C _N :	±10% (µ F)	13	17	25			
l _{max}	(A)	65	75	60			
R _S	$(m\Omega)$	0.7	0.6	0.7			
dv/dt	(V/µ s)	35	35	25			
l peak	(A)	450	600	600			
R th	(°C/W)	2.9	2.3	3.0			
Ø	(mm)	80	90	90			
Н	(mm)	52	52	62			
Terminals		M8	M8	M8			
Max Tighten Torqu	e (Nm)	10	10	10			

U _{GTO} =2000V U _N =1	350V U _{rms} =500'	V U _{max} =1600V U _S	=2000V Voltage Tes	t =2200 VDC x 10s
MODEL:CLP -D3X		9 — 200	12 - 200	18 - 200
C _N	±10% (µ F)	9	12	18
I _{max}	(A)	55	80	55
R _S	(mΩ)	0.8	0.7	0.8
dv/dt	(V/µ s)	40	40	25
l peak	(A)	360	480	450
R th	(°C/W)	3.1	2.4	3.2
Ø	(mm)	80	90	90
Н	(mm)	52	52	62
Terminals		M8	M8	M8
Max Tighten Torqu	ue (Nm)	10	10	10

U _{gto} =2500V U _N =16	50V U _{rms} =550'	V U _{max} =2000V U _S	=2500V Voltage Tes	t =2700 VDC x 10s
MODEL:CLP - D3X -		5 – 250	6.5 - 250	10 – 250
C _N ±	10% (µ F)	5	6.5	10
l _{max}	(A)	50	70	50
R _s	$(m\Omega)$	0.9	0.8	0.9
dv/dt	(V/µ s)	55	55	35
l peak	(A)	250	350	350
R th	(°C/W)	3.4	2.6	3.5
Ø	(mm)	80	90	90
Н	(mm)	52	52	62
Terminals		M8	M8	M8
Max Tighten Torque	(Nm)	10	10	10

APWSERES

CLP W series consits of mixed dielectric capacitors, impregnated with a synthetic oil without environmental or toxicologic problems.

The case is ceramic and the shape is cilindrical. A special arrangement assures very low series resistance and high capability to withstand inrush currents. The capacitors can operate with freon atmosphere. Mechanical fixing consists of threaded holes M8.

GENERAL CHARACTERISTICS

Self inductance	≤ 10 nH
Time constant between terminals (Rt · C)	> 3000 s
Tanδat 1 kHz	1 · 10 ⁻³
Temperature coefficent of capacitance	– 200 ppm/°C
Climatic category ϑ min 25°C	ϑ max + 85°C
Storage temperature v min 55°C	ϑ max + 85°C

CLP W									
U _{GTO} 4500V		U _N 3000V		U _{rms} 1000V		U _{max} 3600		U _s 4500V	
MODEL: CLP - W4X - 10 - 450 Voltage Test: 5000 VDC x 10s									
C _N ±10%(μ F)	l _{max}	(A)	$R_{s}(m\Omega)$	dv/dt(V/µ s)	l peak(A)	R th(°C/W)	R thf(°C/V	/) H(mm)	Ø(mm)
10	10	0	0,15	600	6000	3	2	183	96
Different capacitance on request									

ICAR PRODUCTS

KARpovidesafittdasservice in heldowing pooluts

- poweretationics copacitors
- metalized capacitas for AC, application, with metal arphasis case, and overpressue disconnector;
- bwandhighvabge, mediumandhigh fequencypowerfadaraareafancapaatas anclautamaticalyswichealbankswihharmanic fleringsystems;
- cauping capacitas and capacita valage tansformes;
- energysbaceandputeacpacitos;
- highvalageD.C.generators;
- radiointerference suppression files;
- debyand pulse networks.

ICAR spa Via Isonzo, 10 20052 MONZA (Milano) Tel. 039/83.92.51 - Tlx 333.339 ICAR I - Fax 039/83.32.27